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PRICING OF POWER OPTIONS UNDER THE

REGIME-SWITCHING MODEL†

JERIM KIM

Abstract. Power options have payoffs that are determined by the price
of the underlying asset raised to some power. In this paper, power options
are considered under a regime-switching model which can capture complex

asset dynamics by permitting switching between different regimes. The
pricing formulas for the Laplace transforms of power options are obtained.
The prices of power options are calculated using the formulas and compared
with the results of the Monte Carlo simulation.
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1. Introduction

Power options are one of exotic options and have payoffs that are determined
by the stock price raised to some power, whereas plain vanilla options have
linear payoffs. Because of the non-linear characteristics of these power options,
the power option is appropriate for hedging non-linear price risks [11]. When the
exponent of power option is greater than 1, the power option provides a greater
leverage than a plain vanilla option. Therefore, for an investor with a strong
view of the market, a power call option brings more benefits than a plain vanilla
option [7]. On the other hand, it can lead an option seller to high losses. Thus
the power call options are usually capped at some predefined level [4].

Power options, also known as polynomial options and leveraged options, are
widely traded in financial markets. For example, an option whose payoff is a
polynomial function of the Nikkei level at the maturity was issued in Tokyo [7].
Bankers Trust in Germany has issued capped foreign-exchange power options
with power exponent two [12]. For more examples, see Tompkins [11], and
Macovschi and Quittard-Pinon [9].
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Under the Black-Scholes model, Heynen and Kat [7] obtained the pricing for-
mula for power options. Esser [3] and Macovschi and Quittard-Pinon [9] derived
a quasi-closed form pricing equation for power options in a general framework.
Under the Heston model, pricing formulas for power options were derived ana-
lytically in Kim et al. [8].

In this paper, power option prices are considered in a regime-switching model.
The regime-switching model, first introduced by Hamilton [6], is one of the most
popular nonlinear time series models in the literature. This model can capture
complex asset dynamics by permitting switching between different regimes [5].
Su et al. [10] studied this model and obtained a conditional power option value,
which can be computed only for a two-state regime-switching model. In this
paper, explicit formulas for the Laplace transforms of power option prices are
derived under the general regime-switching model.

The rest of the paper is organized as follows. In Section 2, the regime-
switching model and power options are described. Then explicit formulas for
the Laplace transforms of power option prices are derived in Section 3. Sec-
tion 4 calculates prices of power options using the formulas in Section 3, and
compares them with the results of the Monte Carlo simulation.

2. The model and power options

Under the risk-neutral measure P, the underlying asset price St is given by

dSt

St
= rZ(t)dt+ σZ(t)dWt

where {Z(t) : t ≥ 0} represents the market regime as an irreducible continuous-
time Markov process with a finite state space E = {1, . . . ,m} and an infinitesimal
generator Q. Here, {W (t) : t ≥ 0} is standard Brownian motion, and {Z(t) : t ≥
0} and {W (t) : t ≥ 0} are independent under P. We consider a filtration {Ft :
t ≥ 0}, where Ft is the smallest σ-algebra generated by {W (u), Z(u) : u ≤ t}.
For each i ∈ E, ri and σi represent the expected rate of return and the volatility
of the stock price at regime i, respectively.

There are three kinds of power options: standard power option, capped power
option and powered option. The payoffs of all power options depend on the price
of the underlying asset raised to the power α > 0. For a standard power call, the
payoff is max{Sα

T −Kα, 0}, and for a standard power put, it is max{Kα−Sα
T , 0}

with strike K and maturity T . Standard power call options can be lead to
very high risk for a option seller and thus the call options are usually capped
at some predefined level L. The payoff at maturity for a capped power call is
min{max{Sα

T −Kα, 0}, L}. A powered call has the payoff (max{ST −K, 0})α,
and a powered put has the payoff (max{K − ST , 0})α.

It is not necessary to obtain all of these price. The payoff of the capped
power call option can be represented as the difference between the payoffs of
two standard power call options. In addition, a price of a standard power call
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option can be obtained from a price of a standard power put option by the put-
call parity with the conditional α-th moment of the underlying asset. Hence, in
the remainder of this paper, standard power put, powered call and powered put
options will be considered. The values of the power options are given as follows:

• The value of the α-th standard power put option with strike price K
and maturity T is given by

Powp(α, S0,K, T, i) ≡ E
[
e−

∫ T
0

rZ(t)dt max{Kα − Sα
T , 0}

∣∣∣Z(0) = i
]
.

• The value of the α-th powered call and put options with strike price K
and maturity T , respectively, are given by

Powdc(α, S0,K, T, i) ≡ E
[
e−

∫ T
0

rZ(t)dt(max{ST −K, 0})α
∣∣∣Z(0) = i

]
and

Powdp(α, S0,K, T, i) ≡ E
[
e−

∫ T
0

rZ(t)dt(max{K − ST , 0})α
∣∣∣Z(0) = i

]
.

3. Laplace transforms of power option prices

For w ∈ C and t > 0, define ψi(w, t) as

ψi(w, t) = Ei[e
−

∫ t
0
rZ(u)du+w logSt ],

with Ei[·] = E[·|Z(0) = i] the conditional expectation given Z(0) = i.

Lemma 3.1. For w ∈ C, ψi(w, t) is given by

ψi(w, t) = Sw
0 e

⊤
i e

tΛ(w)1, (1)

where ei is the m-dimensional column vector with all 0s except for a 1 in the ith
component, 1 is the m-dimensional column vector with all its components equal
to one, and

Λ(w) = Q+ diag
(
− ri + (ri −

1

2
σ2
i )w +

σ2
i

2
w2

)
i∈E

where diag(ai)i∈E is an m ×m diagonal matrix whose diagonal entries are ai,
i ∈ E.

Proof. Define Y (t) = −
∫ t

0
rZ(u)du + w log St

S0
. Then a bivariate Markov pro-

cess {(Y (t), Z(t)) : t ≥ 0} is a continuous time Markov addictive process. By
Proposition XI.2.2 in Asmussen [2], the m ×m matrix Φ(t) with (i, j)th entry
ϕij(t) = Ei[e

Y (t)
1{Z(t)=j}] is given by

Φ(t) = etΛ(w).

Since ψi(w, t) = Sw
0

∑
j∈E ϕij(t) = Sw

0 e
⊤
i Φ(t)1, (1) is obtained. �

Now analytic formulas for the Laplace transform of the standard power op-
tions and the powered options are presented.
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Standard power option. Recall that the Powp(α, S0,K, T, i) is the price of
the standard power put option with strike K and maturity T given that the
price of the underlying asset is S0 and the current regime is i. Let

f(k) = Powp(α, S0, e
k, T, i).

The Laplace transform f̃ of f with respect to k is defined as

f̃(w) =

∫ ∞

−∞
e−wkf(k)dk

for complex number w such that the right hand side is well-defined. The following
theorem provides an explicit formula for the transform f̃(w).

Theorem 3.2. Suppose that w is a complex number such that Re(w) > α. Then

the Laplace transform f̃(w) is given by

f̃(w) =
α

w(w − α)
Sα−w
0 e⊤i e

TΛ(α−w)1

where ei, 1 and Λ(w) are given in Lemma 3.1.

Proof. Let X(t) = logS(t). For Re(w) > α, f̃(w) can be written as

f̃(w) = Ei[

∫ ∞

−∞
e−wk−

∫ t
0
rZ(u)du max{eαk − eαXT , 0}dk]

= Ei[e
−

∫ t
0
rZ(u)du

∫ ∞

XT

e−wk(eαk − eαXT )dk]. (2)

The integration in (2) is∫ ∞

XT

e−wk(eαk − eαXT )dk =
α

w(w − α)
e(α−w)XT , for Re(w) > α. (3)

Substituting (3) into (2) yields

f̃(w) =
α

w(w − α)
Ei[e

−
∫ t
0
rZ(u)du+(α−w)XT ]

=
α

w(w − α)
ψi(α− w, T ).

By (1) in Lemma 3.1, the proof is completed. �
Powered option. Recall that Powdc(α, S0,K, T, i) and Powdp(α, S0,K, T, i)
are the prices of the powered call and put options, respectively, with strike K
and maturity T given that the price of the underlying asset is S0 and the current
regime is i. Let

gc(k) = Powdc(α, S0, e
k, T, i),

gp(k) = Powdp(α, S0, e
k, T, i).

Laplace transforms g̃c and g̃p with respect to k are defined, respectively, as

g̃c(w) =

∫ ∞

−∞
e−wkgc(k)dk and g̃p(w) =

∫ ∞

−∞
e−wkgp(k)dk
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for complex number w such that the right-hand side of each equation is well-
defined.

If α is a positive integer, the payoff of a powered option is the sum of payoffs
for standard power options by the binomial theorem. For a general α > 0, the
Newton’s generalized binomial theorem is used. The theorem is stated as follows:
For any complex numbers w, x and y such that |x| > |y|,

(x+ y)w =
∞∑

n=0

(
w

n

)
xw−nyn, (4)

where
(
w
n

)
= (w)n

n! with falling factorial (w)n = w(w − 1) · · · (w − n+ 1).
The complete beta function is used in Theorem 3.3. It is defined as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

for Re(x) > 0 and Re(y) > 0. Note that B(x, y) is symmetric by its definition,
and has another form as follows:

B(x, y) =
∞∑

n=0

(
n− y

n

)
1

x+ n
. (5)

Theorem 3.3. (a) Suppose that w is a complex number such that Re(w) < 0.
Then the Laplace transform g̃c is given by

g̃c(w) = B(−w,α+ 1)Sα−w
0 e⊤i e

TΛ(α−w)1, (6)

where ei, 1 and Λ(w) are given in Lemma 3.1.
(b) Suppose that w is a complex number such that Re(w) > α. Then the

Laplace transform g̃p is given by

g̃p(w) = B(w − α, α+ 1)Sα−w
0 e⊤i e

TΛ(α−w)1.

Proof. Let X(t) = logS(t). For Re(w) < 0, g̃c(w) can be written as

g̃c(w) = Ei[

∫ ∞

−∞
e−wk−

∫ t
0
rZ(u)du(max{eXT − ek, 0})αdk]

= Ei[e
−

∫ t
0
rZ(u)du

∫ XT

−∞
e−wk(eXT − ek)αdk]. (7)

Using (4), for k < XT

(eXT − ek)α =

∞∑
n=0

(
α

n

)
(−1)ne(α−n)XT+nk. (8)

Combine (7) and (8),

g̃c(w) = Ei[

∫ XT

−∞

∞∑
n=0

(
α

n

)
(−1)ne−

∫ t
0
rZ(u)du+(α−n)XT+(n−w)kdk]. (9)
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Since |
(
α
n

)
| < |

(
α

⌊(α+1)/2⌋
)
| with ⌊x⌋ the largest integer less than or equal to x,∣∣∣∣(αn

)
(−1)ne−

∫ t
0
rZ(u)du+(α−n)XT+(n−w)k

∣∣∣∣ < ∣∣∣∣( α

⌊(α+ 1)/2⌋

)∣∣∣∣ e−Re(w)k

for k ≤ XT . By the dominated convergence theorem, (9) follows

g̃c(w) = Ei[

∞∑
n=0

(
α

n

)
(−1)ne−

∫ t
0
rZ(u)due(α−n)XT

∫ XT

−∞
e(n−w)kdk].

For Re(w) < 0 and n > 0, the integration in the above equation is
∫XT

−∞ e(n−w)kdk =
1

n−we
(n−w)XT . Then

g̃c(w) = Ei[
∞∑

n=0

(
α

n

)
(−1)ne−

∫ t
0
rZ(u)due(α−n)XT

1

n− w
e(n−w)XT ]

= Ei[e
−

∫ t
0
rZ(u)du+(α−w)XT ]

∞∑
n=0

(
α

n

)
(−1)n

n− w

= ψi(α− w, T )

∞∑
n=0

(
α

n

)
(−1)n

n− w
. (10)

Since
(
α
n

)
(−1)n =

(
n−1−α

n

)
and (5), the summation in (10) can be written as

∞∑
n=0

(
α

n

)
(−1)n

1

n− w
=

∞∑
n=0

(
n− 1− α

n

)
1

n− w

= B(−w, 1 + α).

Substituting the above equation into (10) yields (6). The proof of (b) is omitted
since it is similar to that of (a). �

4. Numerical examples

In this section, the numerical examples of power options are provided. The
Laplace transforms for the prices of the standard power put and powered put
options are given by Theorem 3.2 and Theorem 3.3, respectively. To invert the
Laplace transforms, the Euler inversion method in Abate and Whitt [1] is used.
The model in the case of two regimes are considered. Suppose that Z is a Markov
process with state space {1, 2} and infinitesimal generator

Q =

[
−2 2
1 −1

]
.

For the calculation of the data in Tables 1 and 2, the parameters used for un-
derlying asset prices are: S0 = 1, r1 = 0.05, r2 = 0.03, σ1 = 0.2 and σ2 = 0.1.

In Tables 1 and 2, the transform method and the Monte Carlo simulation re-
sults are presented for the prices of standard power put options Powp(α, S0,K, T, i)
and powered put options Powdp(α, S0,K, T, i) with power α=2, 3, 5, maturity
T=1, 2, and strike price K =0.9, 1, 1.1. For each simulation result in Tables 1
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and 2, 107 replications are generated. Tables 1 and 2 show that the values of
transform method are included in 95% confidence intervals. It is observed that
the price of each standard power put and powered put option for Z(0) = 2 is
lower than that for Z(0) = 1, and the difference between these values decreases
as T increases. As α increases, the standard power put option value increases in
Table 1, and the powered put option value decreases in Table 2.
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Table 1. Comparison of Theorem 3.2 and the Monte Carlo
results for the values of standard power put options with S0 = 1.

Theorem 3.2 Monte Carlo Simulation

T K α i Option Value Option Value 95% Confidence Interval

1

0.9

2
1 2.4629×10−2 2.4618×10−2 (2.4577×10−2, 2.4658×10−2)
2 1.4365×10−2 1.4348×10−2 (1.4319×10−2, 1.4377×10−2)

3
1 3.0974×10−2 3.0960×10−2 (3.0911×10−2, 3.1010×10−2)
2 1.8289×10−2 1.8269×10−2 (1.8233×10−2, 1.8306×10−2)

5
1 3.6724×10−2 3.6708×10−2 (3.6651×10−2, 3.6765×10−2)
2 2.2151×10−2 2.2132×10−2 (2.2090×10−2, 2.2175×10−2)

1

2
1 8.1102×10−2 8.1092×10−2 (8.1013×10−2, 8.1171×10−2)
2 6.4053×10−2 6.4082×10−2 (6.4017×10−2, 6.4148×10−2)

3
1 1.1206×10−1 1.1204×10−1 (1.1194×10−1, 1.1215×10−1)
2 8.9789×10−2 8.9836×10−2 (8.9746×10−2, 8.9925×10−2)

5
1 1.6085×10−1 1.6084×10−1 (1.6070×10−1, 1.6099×10−1)
2 1.3209×10−1 1.3218×10−1 (1.3205×10−1, 1.3230×10−1)

1.1

2
1 1.9305×10−1 1.9303×10−1 (1.9291×10−1, 1.9315×10−1)
2 1.8058×10−1 1.8063×10−1 (1.8052×10−1, 1.8074×10−1)

3
1 2.8912×10−1 2.8909×10−1 (2.8891×10−1, 2.8927×10−1)
2 2.7423×10−1 2.7431×10−1 (2.7415×10−1, 2.7447×10−1)

5
1 4.8968×10−1 4.8963×10−1 (4.8935×10−1, 4.8992×10−1)
2 4.7510×10−1 4.7524×10−1 (4.7499×10−1, 4.7550×10−1)

2

0.9

2
1 3.4573×10−2 3.4573×10−2 (3.4521×10−2, 3.4625×10−2)
2 2.7085×10−2 2.7098×10−2 (2.7053×10−2, 2.7142×10−2)

3
1 4.2647×10−2 4.2647×10−2 (4.2585×10−2, 4.2710×10−2)
2 3.3712×10−2 3.3725×10−2 (3.3670×10−2, 3.3779×10−2)

5
1 4.8985×10−2 4.8984×10−2 (4.8915×10−2, 4.9053×10−2)
2 3.9298×10−2 3.9309×10−2 (3.9248×10−2, 3.9369×10−2)

1

2
1 8.8857×10−2 8.8862×10−2 (8.8772×10−2, 8.8952×10−2)
2 7.8156×10−2 7.8168×10−2 (7.8087×10−2, 7.8250×10−2)

3
1 1.2046×10−1 1.2047×10−1 (1.2035×10−1, 1.2058×10−1)
2 1.0698×10−1 1.0699×10−1 (1.0688×10−1, 1.0710×10−1)

5
1 1.6773×10−1 1.6774×10−1 (1.6758×10−1, 1.6789×10−1)
2 1.5130×10−1 1.5131×10−1 (1.5116×10−1, 1.5145×10−1)

1.1

2
1 1.8421×10−1 1.8424×10−1 (1.8411×10−1, 1.8437×10−1)
2 1.7460×10−1 1.7463×10−1 (1.7450×10−1, 1.7475×10−1)

3
1 2.7120×10−1 2.7124×10−1 (2.7105×10−1, 2.7143×10−1)
2 2.5950×10−1 2.5954×10−1 (2.5936×10−1, 2.5972×10−1)

5
1 4.4738×10−1 4.4746×10−1 (4.4717×10−1, 4.4776×10−1)
2 4.3448×10−1 4.3453×10−1 (4.3424×10−1, 4.3481×10−1)
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Table 2. Comparison of Theorem 3.3 and the Monte Carlo
results for the values of powered put options with S0 = 1.

Theorem 3.3 Monte Carlo Simulation

T K α i Option Value Option Value 95% Confidence Interval

1

0.9

2
1 1.9303×10−3 1.9343×10−3 (1.9294×10−3, 1.9391×10−3)
2 2.2687×10−4 2.2630×10−4 (2.2521×10−4, 2.2739×10−4)

3
1 3.3083×10−4 3.3171×10−4 (3.3051×10−4, 3.3291×10−4)
2 2.4127×10−5 2.4016×10−5 (2.3833×10−5, 2.4198×10−5)

5
1 1.5737×10−5 1.5773×10−5 (1.5662×10−5, 1.5885×10−5)
2 5.0923×10−7 5.0359×10−7 (4.9489×10−7, 5.1228×10−7)

1

2
1 7.4593×10−3 7.4669×10−3 (7.4557×10−3, 7.4781×10−3)
2 2.4832×10−3 2.4813×10−3 (2.4772×10−3, 2.4854×10−3)

3
1 1.5922×10−3 1.5948×10−3 (1.5914×10−3, 1.5982×10−3)
2 3.2112×10−4 3.2065×10−4 (3.1981×10−4, 3.2149×10−4)

5
1 1.1155×10−4 1.1182×10−4 (1.1137×10−4, 1.1227×10−4)
2 9.4565×10−6 9.4190×10−6 (9.3609×10−6, 9.4771×10−6)

1.1

2
1 2.1240×10−2 2.1251×10−2 (2.1230×10−2, 2.1273×10−2)
2 1.3414×10−2 1.3413×10−2 (1.3403×10−2, 1.3424×10−2)

3
1 5.6311×10−3 5.6365×10−3 (5.6285×10−3, 5.6445×10−3)
2 2.3780×10−3 2.3771×10−3 (2.3742×10−3, 2.3799×10−3)

5
1 5.7089×10−4 5.7194×10−4 (5.7046×10−4, 5.7341×10−4)
2 1.0970×10−4 1.0953×10−4 (1.0925×10−4, 1.0982×10−4)

2

0.9

2
1 3.5493×10−3 3.5461×10−3 (3.5381×10−3, 3.5540×10−3)
2 2.4753×10−3 2.4791×10−3 (2.4729×10−3, 2.4853×10−3)

3
1 7.6581×10−4 7.6480×10−4 (7.6236×10−4, 7.6724×10−4)
2 4.8843×10−4 4.8962×10−4 (4.8785×10−4, 4.9140×10−4)

5
1 5.5903×10−5 5.5742×10−5 (5.5409×10−5, 5.6075×10−5)
2 3.0853×10−5 3.0937×10−5 (3.0717×10−5, 3.1156×10−5)

1

2
1 1.0357×10−2 1.0351×10−2 (1.0335×10−2, 1.0366×10−2)
2 8.1331×10−3 8.1388×10−3 (8.1258×10−3, 8.1518×10−3)

3
1 2.7099×10−3 2.7074×10−3 (2.7016×10−3, 2.7132×10−3)
2 1.9464×10−3 1.9491×10−3 (1.9446×10−3, 1.9535×10−3)

5
1 2.7831×10−4 2.7782×10−4 (2.7675×10−4, 2.7889×10−4)
2 1.7228×10−4 1.7270×10−4 (1.7195×10−4, 1.7344×10−4)

1.1

2
1 2.4524×10−2 2.4515×10−2 (2.4488×10−2, 2.4542×10−2)
2 2.1017×10−2 2.1025×10−2 (2.1002×10−2, 2.1049×10−2)

3
1 7.7157×10−3 7.7107×10−3 (7.6988×10−3, 7.7226×10−3)
2 6.0899×10−3 6.0946×10−3 (6.0850×10−3, 6.1042×10−3)

5
1 1.0929×10−3 1.0915×10−3 (1.0886×10−3, 1.0945×10−3)
2 7.4679×10−4 7.4808×10−4 (7.4592×10−4, 7.5023×10−4)


