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ON THE DYNAMICS OF xn+1 =
a+ xn−1xn−k

xn−1 + xn−k

A. M. AHMED

Abstract. In this paper, we investigate the behavior of solutions of the
difference equation

xn+1 =
a+ xn−1xn−k

xn−1 + xn−k
, n = 0, 1, 2, ...

where k ∈ {1, 2} , a ≥ 0, and x−j > 0, j = 0, 1, ..., k.
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1. Introduction

Difference equations appear as natural descriptions of observed evolution phe-
nomena because most measurements of time evolving variables are discrete and
as such these equations are in their own right important mathematical models.
More importantly, difference equations also appear in the study of discretization
methods for differential equations. Several results in the theory of difference
equations have been obtained as more or less natural discrete analogues of cor-
responding results of differential equations.

Recently there has been a lot of interest in studying the global attractivity,
boundedness character, periodicity and the solution form of nonlinear difference
equations. For example,

Abu-Saris et al.[1] investigated the asymptotic stability of the difference equa-
tion

xn+1 =
a+ xnxn−k

xn + xn−k
, n = 0, 1, 2, ...

For other related results([2-16]).
In this paper, we investigate the behavior of solutions of the difference equa-

tion

xn+1 =
a+ xn−1xn−k

xn−1 + xn−k
, n = 0, 1, 2, ... (1.1)
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where k ∈ {1, 2} , a ≥ 0, and x−j > 0, j = 0, 1, ..., k.
We need the following definitions.

Definition 1.1. Let I be an interval of real numbers and let

f : Ik+1 → I

be a continuously differentiable function. Consider the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ..., (1.2)

with x−k, x−k+1, ..., x0 ∈ I. Let x be the equilibrium point of Eq.(1.2). The
linearized equation of Eq.(1.2) about the equilibrium point x is

yn+1 = c1yn + c2yn−1 + ...+ ck+1yn−k (1.3)

where c1 = ∂f
∂xn

(x, x, ..., x) , c2 = ∂f
∂xn−1

(x, x, ..., x), ..., ck+1 = ∂f
∂xn−k

(x, x, ..., x).

The characteristic equation of Eq.(1.3) is

λk+1 −
k+1∑
i=1

ciλ
k−i+1 = 0. (1.4)

(i) The equilibrium point x of Eq.(1.2) is locally stable if for every ϵ > 0, there
exists δ > 0 such that for all x−k, x−k+1, ..., x−1,x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < δ,

we have
|xn − x| < ϵ for all n ≥ −k.

(ii) The equilibrium point x of Eq.(1.2) is locally asymptotically stable if x is
locally stable and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1, x0 ∈
I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,

we have
lim

n→∞
xn = x.

(iii) The equilibrium point x of Eq.(1.2) is global attractor if for all x−k, x−k+1, ..., x−1,

x0 ∈ I, we have
lim

n→∞
xn = x.

(iv) The equilibrium point x of Eq.(1.2) is globally asymptotically stable if x is
locally stable, and x is also a global attractor of Eq.(1.2).
(v) The equilibrium point x of Eq.(1.2) is unstable if x is not locally stable.

Definition 1.2. A positive semicycle of {xn}∞n=−k of Eq.(1.2) consists of a
‘string’ of terms {xl, xl+1, ..., xm} , all greater than or equal to x, with l ≥ −k
and m ≤ ∞ and such that either l = −k or l > −k and xl−1 < x and either
m = ∞ or m < ∞ and xm+1 < x.

A negative semicycle of {xn}∞n=−k of Eq.(1.2) consists of a ‘string’ of terms
{xl, xl+1, ..., xm} , all less than x, with l ≥ −k and m ≤ ∞ and such that either
l = −k or l > −k and xl−1 ≥ x and either m = ∞ or m < ∞ and xm+1 ≥ x.
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Definition 1.3. A solution {xn}∞n=−k of Eq.(1.2) is called nonoscillatory if there
exists N ≥ −k such that either

xn ≥ x ∀n ≥ N or xn < x ∀n ≥ N ,

and it is called oscillatory if it is not nonoscillatory.

We need the following theorems.

Theorem 1.4 ([16]). (i) If all roots of Eq.(1.4) have absolute value less than
one, then the equilibrium point x of Eq.(1.2) is locally asymptotically stable.

(ii) If at least one of the roots of Eq.(1.4) has absolute value greater than one,
then x is unstable.

The equilibrium point x of Eq.(1.2) is called a saddle point if Eq.(1.4) has
roots both inside and outside the unit disk.

Theorem 1.5 ([16]). Assume that p1, p2, ..., pk ∈ R and k ∈ {1, 2, ...}. Then
k∑

i=1

|pi| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+k + p1xn+k−1 + ...+ pkxn = 0, n = 0, 1, ... . (1.5)

2. Behavior of solutions of Eq.(1.1) when k = 1 and a = 0.

In this section we give the closed form of solutions of Eq.(1.1) when k = 1
and a = 0.

In this case the difference equation (1.1) becomes

xn+1 =
x2
n−1

2xn−1
=

1

2
xn−1, n = 0, 1, 2, ... (2.1)

with positive initial conditions x−1 and x0.
Eq. (2.1) is linear which have the solution

xn =
1

2

(
x0 +

√
2

2
x−1

)(√
2

2

)n

+
1

2

(
x0 −

√
2

2
x−1

)(
−
√
2

2

)n

, n = 1, 2, ...

(2.2)

3. Behavior of solutions of Eq.(1.1) when k = 2 and a = 0.

In this section we investigate the behavior of solutions of Eq.(1.1) when k = 2
and a = 0.

In this case the difference equation (1.1) becomes

xn+1 =
xn−1xn−2

xn−1 + xn−2
, n = 0, 1, 2, ... (3.1)

with positive initial conditions x−2, x−1 and x0.
Eq.(3.1) has a unique equilibrium point x = 0.
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Theorem 3.1. The equilibrium point x = 0 of Eq.(3.1) is locally asymptotically
stable.

Proof. Since the linearized equation of Eq.(3.1) about the equilibrium point
x = 0 can be written in the following form

zn+1 =
1

4
zn−1 +

1

4
zn−2,

then the proof follows immediately from Theorem B. �
Theorem 3.2. The equilibrium point x = 0 of Eq.(3.1) is globally asymptoti-
cally stable.

Proof. From Eq.(3.1) it is easy to show that xn+1 < xn−1 for all n ≥ 0 and so
the even terms converge to a limit (say L1 ≥ 0) and the odd terms converge to
a limit (say L2 ≥ 0). Then

L1 =
L1L2

L1 + L2
and L2 =

L1L2

L1 + L2
,

which implies that L1 = L2 = 0, and the proof is complete. �

4. Behavior of solutions of Eq.(1.1) when k = 1 and a > 0.

In this section we investigate the behavior of solutions of Eq.(1.1) when k = 1
and a > 0.

In this case the difference equation (1.1) becomes

xn+1 =
a+ x2

n−1

2xn−1
, n = 0, 1, 2, ... (4.1)

with positive initial conditions x−1 and x0.
The change of variables xn =

√
ayn reduces Eq.(4.1) to the difference equation

yn+1 =
1 + y2n−1

2yn−1
, n = 0, 1, 2, ... (4.2)

Eq.(4.2) has a unique positive equilibrium point y = 1.

Theorem 4.1. The equilibrium point y = 1 of Eq.(4.2) is locally asymptotically
stable.

Proof. The linearized equation of Eq.(4.2) about the equilibrium point y = 1 is

zn+1 = 0,

and so, the characteristic equation of Eq.(4.2) about the equilibrium point y = 1
is

λ2 = 0,

which implies that |λ1| = |λ2| = 0 < 1. Hence, the proof is complete. �

Theorem 4.2. The equilibrium point y = 1 of Eq.(4.2) is globally asymptoti-
cally stable.
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Proof. Since 1 + y2n−1 ≥ 2yn−1 for all n ≥ 0, then we have yn ≥ 1 for all n ≥ 1.

Furthermore yn+1 =
1 + y2n−1

2yn−1
=

1

2yn−1
+

yn−1

2
≤ 1

2
+

yn−1

2
≤ yn−1 for all

n ≥ 2. So the even terms {y2n}∞n=2 converge to a limit (say L1 ≥ 0) and the odd
terms {y2n+1}∞n=1 converge to a limit (say L2 ≥ 0). Then

L1 =
1 + L2

1

2L1
and L2 =

1 + L2
2

2L2

which implies that L1 = L2 = 1. Thus, the proof is complete. �

5. Behavior of solutions of Eq.(1.1) when k = 2 and a > 0.

In this section we investigate the behavior of solutions of Eq.(1.1) when k = 2
and a > 0.

In this case the difference equation (1.1) becomes

xn+1 =
a+ xn−1xn−2

xn−1 + xn−2
, n = 0, 1, 2, ... (5.1)

with positive initial conditions x−2, x−1 and x0.

The change of variables xn =
√
a

zn
reduces Eq.(5.1) to the difference equation

zn+1 =
zn−1 + zn−2

1 + zn−1zn−2
, n = 0, 1, 2, ... (5.2)

Eq.(5.2) has two equilibrium points z1 = 0 and z2 = 1.

Theorem 5.1. The equilibrium point z1 = 0 of Eq.(5.2) is unstable equilibrium
point.

Proof. The linearized equation of Eq.(5.2) about the equilibrium point z1 = 0 is

zn+1 = zn−1 + zn−2,

and so, the characteristic equation of Eq.(5.2) about the equilibrium point z1 = 0
is

f(λ) = λ3 − λ− 1 = 0.

It is clear that f (λ) has a root in the interval (1,∞), and so, z1 = 0 is an
unstable equilibrium point. This completes the proof. �
Theorem 5.2. The equilibrium point z2 = 1 of Eq.(5.2) is locally asymptotically
stable.

Proof. The linearized equation of Eq.(5.2) about the equilibrium point z2 = 1 is

zn+1 = 0,

and so, the characteristic equation of Eq.(5.2) about the equilibrium point z2 = 1
is

λ3 = 0,

which implies that |λ1| = |λ2| = |λ3| = 0 < 1, from which the proof is complete.
�
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Lemma 5.3. The following identities are true

(i) zn+1 − 1 =
− (zn−1 − 1) (zn−2 − 1)

1 + zn−1zn−2
for n ≥ 0. (5.3)

(ii) zn+1 − zn−1 =
zn−2

(
1− z2n−1

)
1 + zn−1zn−2

for n ≥ 0. (5.4)

(iii) zn+1 − zn−2 =
zn−1

(
1− z2n−2

)
1 + zn−1zn−2

for n ≥ 0. (5.5)

(iv) zn+1 − zn−3 =
(zn−2 + zn−4)

(
1− z2n−3

)
1 + zn−2zn−3 + zn−2zn−4 + zn−3zn−4

for n ≥ 2. (5.6)

(v) zn+1 − zn−4

=
(zn−3 + zn−4 + zn−5 + zn−3zn−4zn−5)

(
1− z2n−4

)
(1 + zn−3zn−4) (1 + zn−4zn−5) + (zn−3 + zn−4) (zn−4 + zn−5)

for n ≥ 3.

(5.7)

Proof. (i) zn+1 − 1 =
zn−1 + zn−2

1 + zn−1zn−2
− 1 = −(zn−1−1)(zn−2−1)

1+zn−1zn−2
for n ≥ 0.

(ii) zn+1 − zn−1 =
zn−1 + zn−2

1 + zn−1zn−2
− zn−1 =

zn−2(1−z2
n−1)

1+zn−1zn−2
for n ≥ 0.

(iii) zn+1 − zn−2 =
zn−1 + zn−2

1 + zn−1zn−2
− zn−2 =

zn−1(1−z2
n−2)

1+zn−1zn−2
for n ≥ 0.

(iv) zn+1 − zn−3

=
zn−1 + zn−2

1 + zn−1zn−2
− zn−3 =

(
zn−3 + zn−4

1 + zn−3zn−4

)
+ zn−2

1 +

(
zn−3 + zn−4

1 + zn−3zn−4

)
zn−2

− zn−3

=
(zn−2 + zn−4)

(
1− z2n−3

)
1 + zn−2zn−3 + zn−2zn−4 + zn−3zn−4

for n ≥ 2.

(v) zn+1 − zn−4 =
zn−1 + zn−2

1 + zn−1zn−2
− zn−4

=

(
zn−3 + zn−4

1 + zn−3zn−4

)
+

(
zn−4 + zn−5

1 + zn−4zn−5

)
1 +

(
zn−3 + zn−4

1 + zn−3zn−4

)(
zn−4 + zn−5

1 + zn−4zn−5

) − zn−4

=
(zn−3 + zn−4 + zn−5 + zn−3zn−4zn−5)

(
1− z2n−4

)
(1 + zn−3zn−4) (1 + zn−4zn−5) + (zn−3 + zn−4) (zn−4 + zn−5)

for n ≥ 3.

Then, the proof is complete. �
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Theorem 5.4. Let {zn}∞n=−2 be a solution of Eq.(5.2), then the following
statements are true

(i) If zn0 = z2 = 1, for some n0 ∈ {−1, 0, 1, 2, ...} , then zn = z2 = 1, for all
n ≥ n0 + 2.

Also if z−2 = z2 = 1, then zn = z2 = 1, for all n ≥ 3.
(ii) If zn0 , zn0+1, zn0+2 < z2 = 1, for some n0 ∈ {−2,−1, 0, 1, 2, ...} , then

zn < z2 = 1, for all n ≥ n0.
(iii) If (i) and (ii) are not satisfied, then {zn}∞n=−2 oscillates about z2 = 1,

with positive semicycles of length at most three, and negative semicycles of length
at most two.

Proof. (i) Let zn0
= z2 = 1, for some n0 ∈ {−1, 0, 1, 2, ...} , then from Eq.(5.3)

we have zn = z2 = 1, for all n ≥ n0 + 2.
If z−2 = z2 = 1, then from Eq.(5.3) we have z1 = z2 = 1, which implies that

zn = z2 = 1, for all n ≥ 3.
(ii) Let zn0 , zn0+1, zn0+2 < z2 = 1, for some n0 ∈ {−2,−1, 0, 1, 2, ...} , then

from Eq.(5.3) we have zn < z2 = 1, for all n ≥ n0.
(iii) Suppose without loss of generality that there exists n0 ∈ {−2,−1, 0, 1, 2, ...} ,

such that zn0 , zn0+1, zn0+2 > z2 = 1. Then from Eq.(5.3) we have zn0+3, zn0+4 <
1, zn0+5 > 1, zn0+6 < 1 and zn0+7, zn0+8, zn0+9 > z2 = 1. The proofs of the other
possibilities are similar, and will be omitted. �

Theorem 5.5. The equilibrium point z2 = 1 of Eq.(5.2) is globally asymptoti-
cally stable.

Proof. We proved that z2 = 1 of Eq.(5.2) is locally asymptotically stable, and so
it suffices to show that limn→∞ zn = 1. If there exists n0 ∈ {−2,−1, 0, 1, 2, ...} ,
such that zn0 = z2 = 1, then from Theorem 5.4 we have limn→∞ zn = 1.
Also, if z−2, z−1, z0 < z2 = 1, then by Theorem 5.4 we have zn < z2 = 1,
for all n ≥ −2, and from Eq.(5.4), we have zn+1 > zn−1, for n ≥ 0. So the
sequences {z2n}∞n=0 and {z2n−1}∞n=0 are increasing and bounded, which implies
that the even terms {z2n}∞n=0 converge to a limit (say M1 > 0) and the odd
terms {z2n−1}∞n=0 converge to a limit (say M2 > 0). Then

M1 =
M1 +M2

1 +M1M2
and M2 =

M1 +M2

1 +M1M2
,

which implies that M1 = M2 = 1.
Now, Suppose that z−2, z−1, z0 > z2 = 1, then from Eqs.(5.4) - (5.7) we have

the following results
The sequence {z7n}∞n=0 is decreasing and bounded, and so converges to a limit

(say L0 > 0) .
The sequence {z7n+1}∞n=0 is increasing and bounded, and so converges to a

limit (say L1 > 0) .
The sequence {z7n+2}∞n=0 is increasing and bounded, and so converges to a

limit (say L2 > 0) .



606 A. M. Ahmed

The sequence {z7n+3}∞n=0 is decreasing and bounded, and so converges to a
limit (say L3 > 0) .

The sequence {z7n+4}∞n=0 is increasing and bounded, and so converges to a
limit (say L4 > 0) .

The sequence {z7n+5}∞n=0 is decreasing and bounded, and so converges to a
limit (say L5 > 0) .

The sequence {z7n+6}∞n=0 is decreasing and bounded, and so converges to a
limit (say L6 > 0) .

So we have from Eq.(5.2) that

L0 =
L4 + L5

1 + L4L5
, L1 =

L5 + L6

1 + L5L6
, L2 =

L0 + L6

1 + L0L6
,

L3 =
L0 + L1

1 + L0L1
, L4 =

L1 + L2

1 + L1L2
, L5 =

L2 + L3

1 + L2L3
,

L6 =
L3 + L4

1 + L3L4
.

The solution of this system is either Li = −1, i = 0, 1, ...6, or Li = 0, i = 0, 1, ...6,
or Li = 1, i = 0, 1, ...6. Since Li > 0, i = 0, 1, ...6 , we have limn→∞ zn = 1.

The proofs for the other cases are as follows.
z−2, z−1 > z2 = 1, z0 < z2 = 1, or z−2, z−1 < z2 = 1, z0 > z2 = 1, or z−2 > z2 =
1, z−1, z0 < z2 = 1, or z−2 < z2 = 1, z−1, z0 > z2 = 1, are similar to the proof of
the last case, and will be omitted. Therefore the proof is complete. �
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