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THE ROLE OF INSTANT NUTRIENT REPLENISHMENT ON

PLANKTON SPECIES IN A CLOSED SYSTEM

J. DHAR∗ AND A. K. SHARMA

Abstract. In this paper, we formulate two chemostat type models of phy-
toplankton and zooplankton population dynamics with instant nutrient re-
cycling to study the role of viral infection on phytoplankton. The infection

is transmitted only among phytoplankton population and it makes them
more vulnerable to predation by zooplankton. It is observe that the chemo-
stat system is very stable in the absence of viral infection but the presence

of viral infection make the chemostat system sensitive with respect to the
grazing rate of infected-phytoplankton by zooplankton. Further, if the
grazing rate is less than certain threshold the system remain stable and
exhibits Hopf-bifurcation after crossing it.
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1. Introduction

Phytoplankton and micro zooplankton are one celled organisms those drift
with the current on the surface of open ocean. They are the staple item for the
food web and are producer and recycler of most of the energy that flow through
the oceanic eco-system. Plankton play important role not only in maintain-
ing the fish stock but stabilize environment by consuming half of the universe
Carbon dioxide and release huge Oxygen. Pollution of fresh water in marine
system by anthropogenic sources has become a concern over the last decades.
Researchers have found out that each tea spoon of ocean water contains 10 mil-
lion to 100 million of viruses. Again, viral infection is known to cause a cell lysis
in phytoplankton and biomass is the common criterion for non-toxic species but
the measurable level of toxin due to harmful species is responsible for the bloom
dynamics. In coastal area viral disease can infect bacteria and phytoplankton
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[1]. Virus like particle is found in many eukastic algae [23] and natural phyto-
plankton community[20]. These virus like particle have also been described in
many eukaryotic algae [7, 8]. The parasite modifying behavior has also been
exhibited by the infected individuals of host population. This may happen by
reducing stamina, disorientation and altering responses[9]. Kill fish(fundulus
parvipinnes) tend to come closer to the surface of the sea on contracting dis-
ease, which make them more vulnerable to predation by birds [21]. Viruses
have been held responsible for the collapse of Emiliaxia Huxleye bloom in meso-
cosms [13, 23]. Since virus have major role in shaping the dynamics of plankton.
Many researchers have developed a epidemiological model and concluded that
infected pollution does not persist if infection rate is below some threshold value
[3, 4, 5, 14, 15, 16, 17, 21, 22]. Recently, the role of toxic producing phytoplank-
ton and delay on planktonic ecosystem in the presence of a toxic producing
phytoplankton are studied [24, 25].

These kind of transmissible disease cause death and behavior change in aquatic
species. As a result of this many planktonic species show bloom in their pop-
ulation (i.e., the rapid growth and decay in their population). The blooms are
of two type, one is spring bloom and other is red bloom. The spring bloom
is seasonal. It is due to change in temperature and nutrient level associated
with season. On the other hand Red bloom is localized out break associated
with change in water temperature and with greater stability of water column
[10]. Different criteria have been used in the literature to define and classify
bloom [11, 22]. Recently, pattern formation have been studied for instant nutri-
ent replenishment on plankton dynamics with diffusion in a closed system [6].
A paper in American Museum of Nature History (2000) reveals that when a
virus injects its DNA into a cell, it hijacks that cells replication machinery and
produce hundreds of new particles. These rupture the host and are released into
the environment to find new victims. Hence, the infected particle itself becomes
the source of infection and this rate of infection is directly proportional to the
number of infected phytoplankton and the number of susceptible phytoplank-
ton. Therefore, in this paper, we have assumed that infected phytoplankton
themselves are the source of infection.

Keeping in view the above discussion, in this paper, we shell study the role
of virus in phytoplankton, zooplankton interaction by developing two chemostat
model of phytoplankton and zooplankton species one without infected phyto-
plankton and other with infected phytoplankton class. In section 2 we shell be
developing and analyzing chemostat model of phytoplankton and zooplankton
species without infected phytoplankton and in section 3 will have the develop-
ment and analysis of model of phytoplankton and zooplankton with infected
phytoplankton class in instantaneous nutrient recycling environment. In section
4 the bifurcation analysis of nutrient plankton system with infected phytoplank-
ton class will be carried out and section 5 will be devoted to the conclusion of
analysis carried out in the previous sections.
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2. Nutrient-Plankton System without Infected Phytoplankton Class

Here we purpose a prey-predator model of phytoplankton in the absence of
infected phytoplankton with instantaneous nutrient recycling. Let N(t), Ps(t)
and Z(t) are nutrient, susceptible phytoplankton and zooplankton population
densities at any time t respectively. Again, d1 and d3, are the per capita death
rate of susceptible phytoplankton and zooplankton respectively. In a natural
plankton system, water flowing into the system brings in nutrient and out going
water carries away nutrient from the system. Further, it is assumed that wa-
ter is carrying away nutrient, susceptible phytoplankton along with flow in the
same rate. Here N0 is the constant nutrient input concentration at any time
and D is the water influx rate or washout rate along with nutrient, susceptible
phytoplankton and zooplankton. The nutrient uptake and grazing rate of phy-
toplankton by zooplankton is assumed to follow law of mass action. Let a1 is the
nutrient uptake rate by susceptible phytoplankton and c1 is the grazing rate of
susceptible phytoplankton by zooplankton. The conversional rate of the nutrient
into susceptible phytoplankton is given by a1 and c11 is the conversional rate
of susceptible phytoplankton into zooplankton. Model equation for the above
model are given by

dN

dt
= D(N0−N)−a1NPs+(1−a1)a1NPs+(1−c11)c1PsZ+d1Ps+D3Pz, (1)

dPs

dt
= a1a1NPs − c1PsZ − d1Ps −DPs, (2)

dZ

dt
= c11c1PsZ − d3Z −DZ, (3)

N(0) > 0, P(0) > 0, Z(0) > 0.

Here all the conversion rates lies between (0,1) and rest of the parameters are
positive. Again, the positive feed back term’s (1 − a1)aNPs, (1 − c11)c1PsZ,
d1Ps and d3Z will be recycled into nutrients, i.e., all the losses are being are
being replenished into nutrients.

Suppose W = N + Ps + Z, then Ẇ = Ṅ + Ṗs + Ż. Using (1)-(3), we get

Ẇ + DW = DN0. Clearly, W → N0 as t → ∞. Hence, the solutions of the
system (1)-(3) exist and bounded for all time to come.

Again, Ṅ = DN0 > 0 at N = 0, which shows that N(t) > 0, ∀ t > 0.
Similarly for Ps and Z. Therefore, we can state the following lemma:

Lemma 2.1. Solutions of equations (1)-(3) are non-negative and bounded.

Now we shell study the asymptotic dynamic of the above system (1)-(3), using
N + Ps + Z = N0, our model reduces to

dPs

dt
= a1a1(N0 − Ps − Z)Ps − c1PsZ − d1Ps −DPs, (4)

dZ

dt
= c11c1PsZ + d3Z −DZ. (5)
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Putting Ps = x, Z(t) = z, a1a1 = a, c1 = c, d1 +D = δ1, d
1 = d, c11c1 = α and

d3 +D = δ3, then system (4)-(5) become

dx

dt
= a(N0 − x− z)x− cxz − δ1x, (6)

dz

dt
= αxz − δ3z. (7)

All possible equilibrium of the system are, (i) E0(0, 0), (ii) E1(
aN0−δ1

a , 0), exist

if aN0 > δ and (iii) E2

(
δ3
α , a(αN0−δ1)−αδ1

α(a+c)

)
, exist if aαN0 > aδ3 + αδ1.

Clearly the dynamic of the above system (6)-(7) can be stated as follows:

(1) E0(0, 0) always exist and stable if aN0 < δ1, then all solution will con-
verges to E0.

(2) The instability of E0(0, 0), i.e., aN0 > δ1 leads to the existence of E1

and all flow converges to E1 if aαN0 < aδ3 + αδ1.
(3) The instability of E1, i.e., aαN0 > aδ3 + αδ1 leads to the existence of

E2.

Hence the system persists uniformly. Again, the characteristic equation of above
system around E∗ is

p(λ) = λ2 + λC1 + C2 = 0, (8)

where C1 = x∗a > 0 and C2 = α(a + c)x∗z∗ > 0. Hence, both the eigen values
of characteristic equation having negative real parts. So, interior equilibrium E∗

if exists, then it is always stable.

Remark 2.1. From the above discussion it is clear that as the nutrient supply
(i.e., aN0) is less than removal rate of nutrient (i.e., δ1) then the system stays in
trivial equilibrium. Again, when the nutrient supply is greater than removal rate
of nutrient δ1 but less than δ1+aδ3/α, then system converges to the zooplankton
free equilibrium. On the other hand if the nutrient supply is greater than δ1 +
aδ3/α, then the interior equilibrium exits and stable.

3. Nutrient Plankton System with Infected Phytoplankton Class

In this model we purpose a prey-predator model for phytoplankton and zoo-
plankton in the presence of viruses with instantaneous nutrient recycling. Let
N(t), Ps(t), Pi(t) and Z(t) are nutrient concentration, susceptible phytoplank-
ton, infected phytoplankton and zooplankton population densities at any time
t respectively. Let d1, d2 and d3, are the per capita death rate of susceptible
phytoplankton, infected phytoplankton and zooplankton respectively. Here, N0

is the constant nutrient input concentration and it is assumed that water is car-
rying away nutrient, susceptible phytoplankton, infected phytoplankton along
with flow in the same rate ′D′. The nutrient-phytoplankton and phytoplankton-
zooplankton interactions are assumed to follow law of mass action. Here a1 is
the nutrient uptake rate by susceptible phytoplankton and c1, d1 are the graz-
ing rate of susceptible and infected phytoplankton by zooplankton respectively.
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The conversional rate of the nutrient into susceptible phytoplankton is given by
a1, whereas c11 and d11 are the conversional rate of susceptible phytoplankton
and infected phytoplankton into zooplankton respectively. Here b1 is the disease
contact rate. Then the model equations for the above system are given as:

dN
dt = D(N0 −N)− a1NPs + (1− a1)a1NPs + (1− c11)e1PsZ

+ (1− d11)d1PiZ + d1Ps + d2Pi + d3Pz,

dPs

dt
= a1a1NPs − b1PsPi − c1PsZ − d1Ps −DPs, (9)

dPi

dt
= b1PsPi − d1PiZ − d2Pi −DPi, (10)

dZ

dt
= c11c1PsZ + d11d1PiZ − d3Z −DZ, (11)

N(0) > 0, P(0) > 0, Pi(0) > 0, Z(0) > 0.

Here all the conversional rates lies between (0, 1) and all other parameters are
positive. Moreover, feed back term’s (1−a1)aNPs, (1−c11)c1PsZ, (1−d11)d′PZ ,
d1Ps, d2Pi and d3Z are being recycled into nutrients, i.e, all the losses are
being replenished into nutrients. Suppose W = N + Ps + Pi + Z, then Ẇ =
Ṅ + Ṗs + Ṗi + Ż. Using (9)-(11), we get Ẇ +DW = DN0. Clearly, W = N0

as t ⇒ ∞. Hence, the solution of the system exists and bounded for all time to
come. Again, ṄN=0=DN0 > 0, Which shows that N(t) > 0, ∀ t > 0. Similarly
Ps, Pi and Z. Therefore, we can state the following lemma:

Lemma 3.1. Solution of system (9)-(11) are non-negative and bounded.

Now we shell discus the asymptotic dynamic of the above system, using,
N + Ps + Pi + Z = N0 in equations (9)-(11), our model reduces to

dPs

dt
= a1a1(N0 − Ps − Pi − Z)Ps − b1PsPi − c1PsZ − d1Ps −DPs, (12)

dPi

dt
= b1PsPi − d1PiZ − d2Pi −DPi, (13)

dZ

dt
= c11c1PsZ + d11d1PiZ − d3Z −DZ. (14)

Putting Ps = x, Pi(t) = y, Z(t) = z, a1a1 = a, b1 = b, c1 = c, d1 + D = δ1,
d1 = d, d2 +D = δ2, c

11c1 = α, d11d1 = β and d3 +D = δ3.
Then equations (12)-(14) become

dx

dt
= a(N0 − x− y − z)x− bxy − cxz − δ1x, (15)

dy

dt
= bxy − dyz − δ2y, (16)

dz

dt
= αxz + βyz − δ3z. (17)
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All the feasible equilibrium of the system are (i) E0(0, 0, 0), (ii) E1(
aN0−δ1

a , 0, 0),

exist if aN0 > δ1, (iii) E2

(
δ2
b ,

a(bN0−δ2)−bδ1
b(a+b) , 0

)
, exist if abN0 > aδ2 + bδ1, (iv)

E3

(
δ3
α , 0, a(αN0−δ3)−αδ1

α(a+c)

)
, exist if aαN0 > aδ3 + αδ1 and (v) E4 (x

∗, y∗, z∗),

where y∗ = δ3−αx∗

β , z∗ = bx∗−δ2
d , x∗ = d(aN0−δ1)β+(a+c)βδ2−(a+b)dδ3

adβ+(a+c)bβ−(a+b)dα , exist if

β > max
{

(a+b)δ3
aN0−δ1

, α(a+b)
a , (a+b)(bδ3−αδ2)

b(aN0−δ1)−aδ2

}
and d < d̂ = (a+c)(bδ3−αδ2)

α(aN0−δ1)−aδ3
.

Now the dynamic of the above system (15)-(17) can be stated as follow:

(1) The trivial steady state E0(0, 0, 0) always exist and stable if , aN0 <
δ1,i.e, the total nutrient supply is less than the wash out rate. Then all
solution will converges to E0.

(2) The instability of E0(0, 0, 0) ,i.e, aN0 > δ1 leads to the existence of
boundary steady state E1 and all flow converges to it if abN0 < aδ2+bδ1
and aαN0 < aδ3 + αδ1.

(3) The instability of E1, for abN0 > aδ2 + bδ1, leads to the existence of
E2,i.e, zooplankton free equilibrium and all flow will converge toward it

if β < β̂ = (a+b)(bδ3−αδ2)
b(aN0−δ1)−aδ2

.

(4) The instability of E1, for aαN0 > aδ3 + αδ1 leads to the existence in-

fection free steady state E3 and all solution converges to it if d > d̂ =
(a+c)(bδ3−αδ2)
α(aN0−δ1)−aδ3

.

(5) Endemic equilibrium E∗ = (x∗, y∗, z∗), where

x∗ = d(aN0−δ1)β+(a+c)βδ2−(a+b)β2δ2
adβ+(a+c)bβ−(a+b)ab)dα , y∗ = (a+c)(bδ3−αδ2)−d(α((aN0−δ1)−aδ3)

adβ+(a+c)bβ−(a+b)dα

and
z∗ = β(b(aN0−δ1)−aδ2)−(a+b)(bδ3−αδ2)

adβ+(a+c)bβ−(a+b)dα exit and stable only if the equilibria

points E0, E1, E2, and E3 are unstable and β > β̂ = (a+b)αd
ad+b(a+c) . Now,

the endemic equilibrium, i.e., E∗ exist If β > max
{

(a+b)δ3
aN0−δ1

, α(a+b)
a ,

(a+b)(bδ3−αδ2)
b(aN0−δ1)−aδ2

, (a+b)αd
ad+b(a+c)

}
and d < (a+c)(bδ3−αδ2)

α(aN0−δ1)−aδ3
. Since dd11 = β and

hence

max
{

(a+b)δ3
aN0−δ1

, α(a+b)
a , (a+b)(bδ3−αδ2)

b(aN0−δ1)−aδ2
, (a+b)αd
ad+b(a+c)

}
< dd11 < d11(a+c)(bδ3−αδ2)

α(aN0−δ1)−aδ3
,

is the range of values of d for which E∗ exist.

Now, we will examine the local behavior of the system around the endemic
equilibrium E∗ = (x∗, y∗, z∗) with respect to the change in parameter d, i.e.,
the grazing rate of infected-phytoplankton by zooplankton. The possibility of
bifurcation of the solution of dynamical system will be explored by taking, the
grazing rate of infected-phytoplankton by zooplankton as a control parameter.
The characteristic equation of system around E∗ is as follow:

P (λ) = λ3 +A1λ
2 +A2λ+A3 = 0, (18)
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where
A1 = ax∗,
A2 = βdy∗z∗ + (a+ b)by∗x∗ + (a+ c)αx∗z∗,
A3 = (adβ + (a+ c)bβ − (a+ b)dα)x∗y∗z∗.

On substitution the values of x∗ and z∗, it can be easily verified that Ai > 0, for
i = 1, 2, 3. Now, from Routh-Hurwitz criterion a set of necessary and sufficient
conditions for all the roots of the above equation (18) having negative real part
are Ai > 0, i = 1, 2, 3 and A1A2 > A3. Now solving the above inequality , we
get a sufficient condition for the stability.

Hence, we can state the following theorem:

Theorem 3.2. If the endemic equilibrium exist, then the sufficient condition for
the system (15)-(17) to be locally stable around the endemic equilibrium point

E∗ is d > b(a+c)β
(a+b)α .

4. Hopf-bifurcation Analysis

Further, we will study the Hopf-bifurcation of above system (15)-(18), taking d
(i.e., the grazing rate of infected-phytoplankton by zooplankton) as a bifurcation
parameter. Now, the necessary and sufficient conditions for the existence of the
Hopf-bifurcation, if there exists d = d0 such that (i) Ai(d0) > 0, i = 1, 2, 3,
(ii) A1(d0)A2(d0) − A3(d0) = 0 and (iii) if we consider the eigen values of the
characteristic equation (18) of the form λi = ui+ivi, then

d
dd (ui) ̸= 0, i = 1, 2, 3.

After substitution of the values, the condition A1A2 −A3 = 0 becomes

d2B1 + dB2 +B3 = 0, (19)

where

B1 = (a+ b)αm1l2 − (a+ b)abk1l2,
B2 = (a+ b)ab(k1l1 −K2l2) + (a+ c)αak1m1 + (a+ c)βbl2m1 − (a+ b)αm1l1,
B3 = (a+ b)abk2l1 + (a+ c)αak2m1 − (a+ c)βbl1m1.

For example, taking a = 0.4, n0 = 50,b = 0.8,c = 1,δ1 = 0.4,δ2 = 0.2,δ3 =
0.5,α = 0.05,β = 0.5, we get a positive root d = 0.367 of the quadratic equation
(19). Therefore, the eigen values of the characteristic equation (19) at d = 0.367
are of the form λ1,2 = ±iv and λ3 = −w, where v and w are positive real
number.
Now, we will verify the condition (iii) of hopf-bifurcation. Put λ = u + iv in
(19), we get

(u+ iv)3 +A1(u+ iv)2 +A2(u+ iv) +A3 = 0. (20)

On separating the real and imaginary part and eliminating v between real and
imaginary part, we get

8u3 + 8A1u
2 + 2(A2

1 +A2)u+A1A2 −A3 = 0. (21)

It is clear from the above that u(d0) = 0 iff A1(d0)A2(d0)−A3(d0) = 0. Further,
at d = d0, u(d0) is the only root, since the discriminant 8u2+8A1u+2(A2

1+A2) =
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Figure 1. The phase plane representation of three species
around the endemic equilibrium, taking a = 0.4, n0 = 50,
b = 0.8, c = 1, δ1 = 0.4, δ2 = 0.2, δ3 = 0.5, α = 0.05, β = 0.5,
and d = 0.35

0 is 64A2
1−64(A2

1+A2) < 0. Again, differentiating (17) with respect to d, we have(
24u2 + 16A1u+ 2(A2

1 +A2)
)

du
dd+

(
8u2 + 4A1u

)
dA1

dd +2udA2

dd + d
dd (A1A2−A3) =

0. Now, since at d = d0, u(d0) = 0, we get
[
du
dd

]
d=d0

=
− d

dd (A1A2−A3)

2(A2
1+A2)

̸= 0,

which will ensure that the above system has a hopf-bifurcation and it is shown
graphically in figures 1-4.

5. Conclusion

In this paper, we have studied the effect of a viral infection which was spread-
ing only among phytoplankton and rendered them more vulnerable to predation
by zooplankton. It was observed that the dynamical system was more stable
in the absence of viral infection. We established that in this dynamical system
disease free equilibrium exist and stable only when the grazing rate of infected-
phytoplankton by zooplankton, (i.e., ”d”) was greater than the threshold value

d̂ = (a+c)(bδ3−αδ2)
α(aN0−δ1)−aδ3

. In other words we found that if the vulnerability of infected

phytoplankton to the predation by the zooplankton was more than the certain

threshold value d̂, then the infected phytoplankton would extinct provided the
boundary equilibrium (i.e., E0 and E1) were unstable. We have also analyzed
that the above chemostat system would go without zooplankton population as
long as the net conversion rate of infected phytoplankton into zooplankton, i.e,

β was below the threshold β̂ = (a+b)(bδ3−αδ2)
b(aN0−δ1)−aδ2

provided the boundary equilibrium
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Figure 2. The phase plane representation of three species
around the endemic equilibrium, taking a = 0.4, n0 = 50,
b = 0.8, c = 1, δ1 = 0.4, δ2 = 0.2, δ3 = 0.5, α = 0.05, β = 0.5,
and d = 0.35
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Figure 3. The phase plane representation of three species
around the endemic equilibrium, taking a = 0.4, n0 = 50,
b = 0.8, c = 1, δ1 = 0.4, δ2 = 0.2, δ3 = 0.5, α = 0.05, β = 0.5,
and d = 0.4
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Figure 4. The phase plane representation of three species
around the endemic equilibrium, taking a = 0.4, n0 = 50,
b = 0.8, c = 1, δ1 = 0.4, δ2 = 0.2, δ3 = 0.5, α = 0.05, β = 0.5,
and d = 0.5

(i.e., E0 and E1) were unstable. Further it has been established that endemic
equilibrium E∗ = (x∗, y∗, z∗) became stable only in some range of values of d.
In section 4, the possibility of bifurcation with respect to the grazing rate of
infected-phytoplankton by zooplankton (i.e., d) was explored both analytically
and numerically. It is found that viral infection has important role in shaping the
dynamics of plankton and this kind of viral infection could give reason for the
outbreak of bloom in phytoplankton species depending upon the rate of grazing
of infected-phytoplankton by zooplankton.
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