DOI QR코드

DOI QR Code

HYPER-CONJUGATE HARMONIC FUNCTION ON DUAL OCTONION VARIABLES

  • Lim, Su Mi (Department of Mathematics, Pusan National University) ;
  • Shon, Kwang Ho (Department of Mathematics, Pusan National University)
  • Received : 2014.05.26
  • Accepted : 2014.06.23
  • Published : 2014.09.25

Abstract

The aim of this paper is to define hyperholomorphic functions with dual octonion variables on $\mathbb{C}^4{\times}\mathbb{C}^4$ in another way. Using condition of harmonicity, we research properties of functions of dual octonion variables in Clifford analysis.

Keywords

References

  1. L. Hormander, An introduction to complex analysis in several variables, North-Holland, Amsterdam. 1966.
  2. H. S. Jung, S. J. Ha, K. H. Lee, S. M. Lim and K. H. Shon, Structures of hyperholomorphic functions on dual quaternion numbers, Honam Mathematical J. 35 (2013), 809-817. https://doi.org/10.5831/HMJ.2013.35.4.809
  3. J. E. Kim, S. J. Lim and K. H. Shon, Regular functions with values in ternary number system on the complex Clifford analysis, Abstract and Applied Analysis. (2013) Article ID 136120, 7 Pages.
  4. J. E. Kim, S. J. Lim and K. H. Shon, Regularity of functions on the reduced quaternion field in Clifford analysis, Abstract and Applied Analysis. (2014) Article ID 654798, 8 Pages.
  5. J. E. Kim and K. H. Shon, The regularity functionson dual split quaternions in Clifford analysis, Abstract and Applied Analysis. (2014) Article ID 369430, 8 Pages.
  6. S. G. Krantz, Funtion theory of several complex variables, Am. Math. Soc, Providence. 2001.
  7. S. J. Lim and K. H. Shon, Hyperholomorphic functions and hyperconjugate harmonic functions of octonion variables, J. Inequ. Appl. 77 (2013), 1-8.
  8. K. Nono, Hyperholomorphic functions of a quaternion variable, Bull. Fukuoka Univ. Ed. 32 (1983), 21-37.
  9. K. Nono, On the octonionic linearization of Laplacian and octonionic function theory, Bull. Fukuoka Univ. Ed. 37 (1988), 1-15.