References
- Brennand, H. S., Soars, N., Dworjanyn, S. A., Davis, A. R. & Byrne, M. 2009. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS One 5:e11372.
- Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. 2004. Toward a metabolic theory of ecology. Ecology 85:1771-1789. https://doi.org/10.1890/03-9000
- Burrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G., Hoffmann, A., Buckley, L. B., Moore, P. J., Brown, C. J., Bruno, J. F., Duarte, C. M., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Sydeman, W. J., Ferrier, S., Williams, K. J. & Poloczanska, E. S. 2014. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507:492-495. https://doi.org/10.1038/nature12976
- Caldeira, K. & Wickett, M. 2003. Anthropogenic carbon and ocean pH. Nature 425:365. https://doi.org/10.1038/425365a
- Catarino, A. I., Bauwens, M. & Dubois, P. 2012. Acid-base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures. Environ. Sci. Pollut. Res. Int. 19:2344-2353. https://doi.org/10.1007/s11356-012-0743-1
-
Connell, S. D. & Russell, B. D. 2010. The direct effects of increasing
$CO_2$ and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. Biol. Sci. 277:1409-1415. https://doi.org/10.1098/rspb.2009.2069 - Crain, C. M., Kroeker, K. & Halpern, B. S. 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11:1304-1315. https://doi.org/10.1111/j.1461-0248.2008.01253.x
- Cruz-Rivera, E. & Hay, M. E. 2000. Can quantity replace quality? Food choice, compensatory feeding, and fitness in marine mesograzers. Ecology 81:201-219. https://doi.org/10.1890/0012-9658(2000)081[0201:CQRQFC]2.0.CO;2
- Davison, I. 1987. Adaptation of photosynthesis in Laminaria saccharina (Phaeophyta) to changes in growth temperature. J. Phycol. 23:273-283. https://doi.org/10.1111/j.1529-8817.1987.tb04135.x
- Davison, I. R., Greene, R. M. & Podolak, E. J. 1991. Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Mar. Biol. 110:449-454. https://doi.org/10.1007/BF01344363
- Dayton, P. K. 1985. Ecology of kelp communities. Ann. Rev. Ecol. Syst. 16:215-245. https://doi.org/10.1146/annurev.es.16.110185.001243
- Dean, T. A., Schroeter, S. C. & Dixon, J. D. 1984. Effects of grazing by two species of sea urchins (Strongylocentrotus franciscanus and Lytechinus anamesus) on recruitment and survival of two species of kelp (Macrocystis pyrifera and Pterygophora californica). Mar. Biol. 78:301-313. https://doi.org/10.1007/BF00393016
- Doney, S. C., Bopp, L. & Long, M. C. 2014. Historical and future trends in ocean climate and biogeochemistry. Oceanography 27:108-119. https://doi.org/10.5670/oceanog.2014.14
-
Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. 2009. Ocean acidification: the other
$CO_2$ problem. Ann. Rev. Mar. Sci. 1:169-192. https://doi.org/10.1146/annurev.marine.010908.163834 - Estes, J. A. & Palmisano, J. F. 1974. Sea otters: their role in structuring nearshore communities. Science 185:1058-1060. https://doi.org/10.1126/science.185.4156.1058
-
Falkenberg, L. J., Russell, B. D. & Connell, S. D. 2013. Future herbivory: the indirect effects of enriched
$CO_2$ may rival its direct effects. Mar. Ecol. Prog. Ser. 492:85-95. https://doi.org/10.3354/meps10491 -
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J. & Millero, F. J. 2004. Impact of anthropogenic
$CO_2$ on the$CaCO_3$ system in the oceans. Science 305:362-366. https://doi.org/10.1126/science.1097329 -
Gaitan-Espitia, J. D., Hancock, J. R., Padilla-Gamino, J. L., Rivest, E. B., Blanchette, C. A., Reed, D. C. & Hofmann, G. E. 2014. Interactive effects of elevated temperature and
$pCO_2$ on early-life-history stages of the giant kelp Macrocystis pyrifera. J. Exp. Mar. Biol. Ecol. 457:51-58. https://doi.org/10.1016/j.jembe.2014.03.018 - Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. 2001. Effects of size and temperature on metabolic rate. Science 293:2248-2251. https://doi.org/10.1126/science.1061967
- Harley, C. D. G., Anderson, K. M., Demes, K. W., Jorve, J. P., Kordas, R. L., Coyle, T. A. & Graham, M. H. 2012. Effects of climate change on global seaweed communities. J. Phycol. 48:1064-1078. https://doi.org/10.1111/j.1529-8817.2012.01224.x
- Harrold, C. & Reed, D. C. 1985. Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66:1160-1169. https://doi.org/10.2307/1939168
-
Hepburn, C. D., Pritchard, D. W., Cornwall, C. E., McLeod, R. J., Beardall, J., Raven, J. A. & Hurd, C. L. 2011. Diversity of carbon use strategies in a kelp forest community: implications for a high
$CO_2$ ocean. Glob. Chang. Biol. 17:2488-2497. https://doi.org/10.1111/j.1365-2486.2011.02411.x - Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. J., Gambi, M. C., Ribest, E. B., Frieder, C. A., Yu, P. C. & Martz, T. R. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLos One 6:e28983 https://doi.org/10.1371/journal.pone.0028983
- Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54:187-211. https://doi.org/10.2307/1942661
- Intergovernmental Panel on Climate Change. 2007. Technical summary. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. (Eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1-91.
-
Israel, A. & Hophy, M. 2002. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater
$CO_2$ concentrations. Glob. Chang. Biol. 8:831-840. https://doi.org/10.1046/j.1365-2486.2002.00518.x -
Jordan, D. B. & Ogren, W. L. 1984. The
$CO_2$ /$O_2$ specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta 161:308-313. https://doi.org/10.1007/BF00398720 - Kenner, M. C. 1992. Population dynamics of the sea urchin Strongylocentrotus purpuratus in a Central California kelp forest: recruitment, mortality, growth, and diet. Mar. Biol. 112:107-118. https://doi.org/10.1007/BF00349734
- Koch, M., Bowes, G., Ross, C. & Zhang, X. -H. 2013. Climate change and ocean acidifications effects on seagrasses and marine macroalgae. Glob. Chang. Biol. 19:103-132. https://doi.org/10.1111/j.1365-2486.2012.02791.x
- Konar, B., Edwards, M. S. & Estes, J. A. 2014. Biological interactions maintain the boundaries between kelp forests and urchin barrens in the Aleutian Archipelago. Hydrobiologia 724:91-107. https://doi.org/10.1007/s10750-013-1727-y
-
Kurihara, H. 2008. Effects of
$CO_2$ -driven ocean acidification on the early developmental stages of invertebrates. Mar. Ecol. Prog. Ser. 373:275-284. https://doi.org/10.3354/meps07802 - Leinaas, H. P. & Christie, H. 1996. Effects of removing sea urchins (Strongylocentrotus droebachiensis): stability of the barren state and succession of kelp forest recovery in the east Atlantic. Oecologia 105:524-536. https://doi.org/10.1007/BF00330016
- Lemire, M. & Himmelman, J. H. 1996. Relation of food preference to fitness for the green sea urchin, Strongylocentrotus droebachiensis. Mar. Biol. 127:73-78. https://doi.org/10.1007/BF00993646
- Mann, K. H. 1977. Destruction of kelp-beds by sea-urchins: a cyclical phenomenon or irreversible degradation? Helgol. Weissenschaftliche Meeresunters. 30:455-467. https://doi.org/10.1007/BF02207854
- O'Connor, M. I. 2009. Warming strengthens an herbivore-plant interaction. Ecology 90:388-398. https://doi.org/10.1890/08-0034.1
-
Parker, B. C. 1965. Translocation in the giant kelp Macrocystis I. rates, direction, quantity of
$C^{14}$ -labeled products and fluorescein. J. Phycol. 1:41-46. https://doi.org/10.1111/j.1529-8817.1965.tb04554.x - Platt, T., Denman, K. L. & Jassby, A. D. 1975. The mathematical representation and prediction of phytoplankton productivity. Technical Report 523. Fisheries and Marine Services, Environment Canada, Ottawa, 110 pp.
- Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F., Thompson, S. A. & Richardson, A. J. 2013. Global imprint of climate change on marine life. Nat. Clim. Chang. 3:919-925. https://doi.org/10.1038/nclimate1958
- Portner, H. -O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Mar. Ecol. Prog. Ser. 373:203-217. https://doi.org/10.3354/meps07768
-
Ries, J. B., Cohen, A. L. & McCorkle, D. C. 2009. Marine calcifiers exhibit mixed responses to
$CO_2$ -induced ocean acidification. Geology 37:1131-1134. https://doi.org/10.1130/G30210A.1 -
Roleda, M. Y., Morris, J. N., McGraw, C. M. & Hurd, C. L. 2012. Ocean acidification and seaweed reproduction: increased
$CO_2$ ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Glob. Chang. Biol. 18:854-864. https://doi.org/10.1111/j.1365-2486.2011.02594.x - Siikavuopio, S. I., Mortensen, A., Dale, T. & Foss, A. 2007. Effects of carbon dioxide exposure on feed intake and gonad growth in the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture 266:97-101. https://doi.org/10.1016/j.aquaculture.2007.02.044
-
Spicer, J. I., Widdicombe, S., Needhan, H. R. & Berge, J. A. 2011. Impact of
$CO_2$ -acidified seawater on the extracellular acid-base balance of the northern sea urchin Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 407:19-25. https://doi.org/10.1016/j.jembe.2011.07.003 -
Stiling, P. & Cornelissen, T. 2007. How does elevated carbon dioxide (
$CO_2$ ) affect plant-herbivore interactions? A field experiment and meta-analysis of$CO_2$ -mediated changes on plant chemistry and herbivore performance. Glob. Chang. Biol. 13:1823-1842. https://doi.org/10.1111/j.1365-2486.2007.01392.x - Wernberg, T., Smale, D. A. & Thomsen, M. S. 2012. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob. Chang. Biol. 18:1491-1498. https://doi.org/10.1111/j.1365-2486.2012.02656.x
Cited by
- The ‘golden kelp’ Laminaria ochroleuca under global change: Integrating multiple eco-physiological responses with species distribution models 2017, https://doi.org/10.1111/1365-2745.12810
- Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera vol.124, pp.3, 2015, https://doi.org/10.1007/s11120-015-0138-5
- Ocean acidification and kelp development: Reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida vol.53, pp.3, 2017, https://doi.org/10.1111/jpy.12518
- Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory vol.6, pp.1, 2016, https://doi.org/10.1038/srep38017
- Assessing the ecosystem-level consequences of a small-scale artisanal kelp fishery within the context of climate-change vol.27, pp.3, 2017, https://doi.org/10.1002/eap.1484
- Abiotic influences on bicarbonate use in the giant kelp,Macrocystis pyrifera, in the Monterey Bay vol.53, pp.1, 2017, https://doi.org/10.1111/jpy.12480
- Increased temperature and CO2 alleviate photoinhibition in Desmarestia anceps: from transcriptomics to carbon utilization vol.68, pp.14, 2017, https://doi.org/10.1093/jxb/erx164
- Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study vol.31, pp.3, 2016, https://doi.org/10.4490/algae.2016.31.8.20
- Increased temperature, rather than elevated CO2, modulates the carbon assimilation of the Arctic kelps Saccharina latissima and Laminaria solidungula vol.163, pp.12, 2016, https://doi.org/10.1007/s00227-016-3024-6
- Environmental factors influencing the proliferation of microscopic epiphytic algae on giant kelp under aquarium conditions 2017, https://doi.org/10.1007/s10811-017-1148-9
- Elevated pCO2 is less detrimental than increased temperature to early development of the giant kelp, Macrocystis pyrifera (Phaeophyceae, Laminariales) vol.56, pp.6, 2017, https://doi.org/10.2216/16-120.1
- Meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida under ocean acidification and ocean warming: independent effects are more important than their interaction vol.164, pp.1, 2017, https://doi.org/10.1007/s00227-016-3039-z
- Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption vol.13, pp.2, 2018, https://doi.org/10.1371/journal.pone.0192772
- Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-5064-4
- (Corallinales, Rhodophyta) vol.57, pp.3, 2018, https://doi.org/10.2216/17-71.1
- Ocean warming has greater and more consistent negative effects than ocean acidification on the growth and health of subtropical macroalgae vol.595, pp.1616-1599, 2018, https://doi.org/10.3354/meps12552
- affected by ocean acidification and warming vol.50, pp.3, 2019, https://doi.org/10.1111/are.13957
- Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory vol.142, pp.None, 2014, https://doi.org/10.1016/j.marenvres.2018.09.026
- Diverse responses of sporophytic photochemical efficiency and gametophytic growth for two edible kelps, Saccharina japonica and Undaria pinnatifida, to ocean acidification and warming vol.142, pp.None, 2019, https://doi.org/10.1016/j.marpolbul.2019.03.063
- Effects of elevated temperature and sedimentation on grazing rates of the green sea urchin: implications for kelp forests exposed to increased sedimentation with climate change vol.73, pp.1, 2014, https://doi.org/10.1186/s10152-019-0526-x
- Impact of Temperature, Low pH and NH4+ Enrichment on Ecophysiological Responses of a Green Tide Species Ulva australis Areschoug vol.55, pp.1, 2014, https://doi.org/10.1007/s12601-020-0005-y
- Effects of Heat Waves and Light Deprivation on Giant Kelp Juveniles (Macrocystis pyrifera, Laminariales, Phaeophyceae) vol.56, pp.4, 2014, https://doi.org/10.1111/jpy.13000
- Species-specific biomass drives macroalgal benthic primary production on temperate rocky reefs vol.35, pp.3, 2020, https://doi.org/10.4490/algae.2020.35.8.19
- pH variability off Goa (eastern Arabian Sea) and the response of sea urchin to ocean acidification scenarios vol.41, pp.5, 2020, https://doi.org/10.1111/maec.12614
- Impacts of hypoxic events surpass those of future ocean warming and acidification vol.5, pp.3, 2021, https://doi.org/10.1038/s41559-020-01370-3
- Windows of vulnerability: Seasonal mismatches in exposure and resource identity determine ocean acidification’s effect on a primary consumer at high latitude vol.27, pp.5, 2014, https://doi.org/10.1111/gcb.15449
- Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming vol.769, pp.None, 2014, https://doi.org/10.1016/j.scitotenv.2020.144443
- Thermal Tolerance May Slow, But Not Prevent, the Spread of Sargassum horneri (Phaeophyceae) along the California, USA and Baja California, MEX Coastline vol.57, pp.3, 2014, https://doi.org/10.1111/jpy.13148
- Kelp aquaculture in China: a retrospective and future prospects vol.13, pp.3, 2014, https://doi.org/10.1111/raq.12524
- Experimental assessment of the impacts of ocean acidification and urchin grazing on benthic kelp forest assemblages vol.540, pp.None, 2021, https://doi.org/10.1016/j.jembe.2021.151548
- One of the least disturbed marine coastal ecosystems on Earth: Spatial and temporal persistence of Darwin’s sub‐Antarctic giant kelp forests vol.48, pp.10, 2014, https://doi.org/10.1111/jbi.14221
- Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-82094-7
- Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-90608-6