References
- Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992; 14(2):239-256. https://doi.org/10.1109/34.121791
- Sun YW, Xu JT. An optimal matching algorithm based on rough localization and exact adjustment, Key Engineering Materials. 2005; 291-292:661-666. https://doi.org/10.4028/www.scientific.net/KEM.291-292.661
- Zhang ZY. Iterative point matching for registration of freeform curves and surfaces. International Journal of Computer Vision. 1994; 13(2):119-152. https://doi.org/10.1007/BF01427149
- Sharp GC, Lee SW, Wehe DK. ICP registration using invariant features. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002; 24(1):90-102. https://doi.org/10.1109/34.982886
- Song Y, Vergeest SM, Matching geometric shapes in 4D space incorporating curvature information. In: ASME 2007 International Design Engineering Technical conferences and Computers and Information in Engineering Conference, 33rd Design Automation Conference, Parts A and B; 2007 Sep 4-7; Las Vegas, Nevada, USA; p. 515-523.
- Ma W, Kruth JP. Parametrization of randomly measured points for least squares fitting of B-spline curves and surfaces. Computer- Aided Design. 1995; 27(9):663-675. https://doi.org/10.1016/0010-4485(94)00018-9
- Piegl LA, Tiller W. Parametrization for surface fitting in reverse engineering. Computer-Aided Design. 2001; 33:593-603. https://doi.org/10.1016/S0010-4485(00)00103-2
- Limaiem A, Trochu F. Geometric algorithms for the intersection of curves and surfaces. Computers and Graphics. 1995; 19(3):391-403. https://doi.org/10.1016/0097-8493(95)00009-2
- Escobar JM, Montenegro R, Rodriguez E and Montero G. Simultaneous aligning and smoothing of surface triangulations. Engineering with Computers. 2011; 27(1):17-29. https://doi.org/10.1007/s00366-010-0177-7
- Flory S, Hofer M, Constrained curve fitting on manifolds. Computer-Aided Design. 2008; 40(1):25-34. https://doi.org/10.1016/j.cad.2007.01.012
- Zheng ZT and Chen SG. The general orthogonal projection on a regular surface. In: Proceedings of the 5th European Computing Conference (ECC'11); 2011 Apr 28-30; Paris, France; p. 116-119.
- Ahn SJ, Rauh W, Warnecke HJ. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recognition. 2001; 34:2283-2303. https://doi.org/10.1016/S0031-3203(00)00152-7
- Ahn SJ, Rauh W, Recknagel M. Least squares orthogonal distance fitting of implicit curves and surfaces. LNCS. 2001; 2191:398-405.
- Ahn SJ, Rauh W, Cho HS, Warnecke HJ. Orthogonal distance fitting of implicit curves and surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002; 42(5):620-638.
- Chernov N, Ma H. Least squares fitting of quadratic curves and surfaces. Nova Science Publisher: Computer Vision; 2011.
- Wijewickrema S, Esson C, Paplinski A. Orthogonal distance least squares fitting: a novel approach. Computer Vision, Image and Computer Graphics. Theory and Applications. 2010; 68:222-268.
- Pegna J, Wolter FE. Surface curve design by orthogonal projection of space curves onto free-form surfaces. Journal of Mechanical Design, ASME Transaction. 1996; 118(1):45-52. https://doi.org/10.1115/1.2826855
- Chernov N, Wijewickrema S. Algorithms for projecting points onto conics. Journal of Computational and Applied Mathematics. 2013; 251:8-21. https://doi.org/10.1016/j.cam.2013.03.031
- Eberly DH. 3D game engine design: a practical approach to real-time computer graphics. 2nd ed. San Francisco (CA): Morgan Kaufmann Publishers; 2007.
- Aigner M, Juttler B. Robust computation of foot points on implicitly defined curves. In: Daehlen M, Morken K, Schumaker L, editors, Mathematical methods for curves and surfaces. Brentwood (LA): Nashboro Press; 2005. p. 1-10.
- Christianson B. Solving quartics using palindromes. Mathematical Gazette. 1991; 75:327-328. https://doi.org/10.2307/3619497
- Mochimaru Y. Reciprocal solution of a quartic equation. International Journal of Pure and Applied Mathematics. 2004; 14(2):207-210.
- Neumark S. Solution of cubic and quartic equations. Oxford: Pergamon Press; 1965.
- Yacoub MD, Fraidenraich G. A new simple solution of the general quartic equation. Mathematical Gazette; 2011.
- Shmakov SL. A universal method of solving quartic equation. International Journal of Pure and Applied Mathematics. 2011; 71(2):251-259.
- Mortenson ME. Geometric modeling. New York (NY): Wiley;1985.
- Hartmann E. On the curvature of curves and surfaces defined by normalforms. Computer Aided Geometric Design. 1999; 16:355-376. https://doi.org/10.1016/S0167-8396(99)00003-5
- Piegl LA, Tiller W. The NURBS book. 2nd ed. New York (NY): Springer-Verlag; 1995.
- Matheron G. Splines et Krigeage: leur equivalence formelle, Rapport N-667. Center de Geostatistique, Fontainebleau: Ecole des Mines de Paris; 1980.
- Hoschek J, Lasser D, Fundamentals of computer aided geometric design. Natick (MA): A K Peters; 1993.
- Rogers DF, Fog NG. Constrained B-spline curve and surface fitting. Computer-Aided Design. 1989; 21:641-648. https://doi.org/10.1016/0010-4485(89)90162-0
- Hoschek J, Schneider FJ, Wassum P. Optimal approximate conversion of spline surfaces. Computer Aided Geometric Design. 1989; 6:293-306. https://doi.org/10.1016/0167-8396(89)90030-7
- Hu SM, Wallner J. A second order algorithm for orthogonal projection onto curves and surfaces. Computer Aided Geometric Design. 2005; 22(3):251-260. https://doi.org/10.1016/j.cagd.2004.12.001
- Liu XM, Yang L, Yong JH, Gu HJ, Sun JG. A torus patch approximation approach for point projection on surfaces. Computer Aided Geometric Design. 2009; 26:593-598. https://doi.org/10.1016/j.cagd.2009.01.004
- Ko KH. Analysis on point projection onto curves. Transactions of the Society of CAD/CAM Engineers. 2013; 18(1):49-57. In Korean. https://doi.org/10.7315/CADCAM.2013.49
- Song HC, Xu X, Shi KL, Yong JH. Projecting points onto planar parametric curves by local biarc approximation. Computers & Graphics. 2014; 38:183-190. https://doi.org/10.1016/j.cag.2013.10.033
- Ma YL, Hewitt WT, Point inversion and projection for NURBS curve and surface: control polygon approach. Computer Aided Geometric Design. 2003; 20:79-99. https://doi.org/10.1016/S0167-8396(03)00021-9
- Chen XD, Su H, Yong JH, Paul JC, Sun JG. A counterexample on point inversion and projection for NURBS curve. Computer Aided Geometric Design. 2007; 24(5): 302. https://doi.org/10.1016/j.cagd.2007.03.008
- Selimovic I. Improved algorithms for the projection of points on NURBS curves and surfaces. Computer Aided Geometric Design. 2006; 23:439-445. https://doi.org/10.1016/j.cagd.2006.01.007
- Chen XD, Yong JH, Wang G, Paul JC, Xu G. Computing the minimum distance between a point and a NURBS curve. Computer- Aided Design. 2008; 40:1051-1054. https://doi.org/10.1016/j.cad.2008.06.008
- Oh YT, Kim YJ, Lee J, Kim MS, Elber G. Efficient pointprojection to freeform curves and surfaces. Computer Aided Geometric Design. 2012; 29:242-254. https://doi.org/10.1016/j.cagd.2011.04.002
- Oh YT, Kim YJ, Lee J, Kim MS, Elber G. Continuous point projection to planar freeform curves using spiral curves. The Visual Computer. 2012; 28:111-123. https://doi.org/10.1007/s00371-011-0632-5
- Zhou J, Sherbrooke EC, Patrikalakis NM. Computation of stationary points of distance functions. Engineering with Computers. 1993; 9:231-246. https://doi.org/10.1007/BF01201903
- Sherbrooke EC, Patrikalakis, NM. Computation of the solutions of nonlinear polynomial systems. Computer Aided Geometric Design. 1993; 10(5):379-405. https://doi.org/10.1016/0167-8396(93)90019-Y
- Ko K. Algorithms for three-dimensional free-form object matching. PhD Thesis. Cambridge (MA): Massachusetts Institute of Technology; 2003.
- Song HC, Yong JH, Yang YJ and Liu XM. Algorithm for orthogonal projection of parametric curves onto B-spline surfaces. Computer-Aided Design. 2011; 43:381-393. https://doi.org/10.1016/j.cad.2011.01.008
- Wang X, Zhang W, Zhou L, Zhang L. Constructing G1 continuous curve on a free-form surface with normal projection. International Journal of Computer Mathematics. 2010; 87(10):2291-2302. https://doi.org/10.1080/00207160802624349
- Wang X, An L, Zhou L, Zhang L. Constructing G2 continuous curve on freeform surface with normal projection. Chinese Journal of Aeronautics. 2010; 23:137-144. https://doi.org/10.1016/S1000-9361(09)60197-7
- Xu HY, Fang X, Tam HY, Wu X, Hu L. A second-order algorithm for curve orthogonal projection onto parametric surface. International Journal of Computer Mathematics. 2012; 89(1):98-111. https://doi.org/10.1080/00207160.2011.628385
- Alex M, Adamson A. On normals and projection operators for surfaces defined by point sets. In: Eurographics Symposium on Point-Based Graphics; 2004; ETH Zurich, Switzerland.
- Levin D. Mesh-independent surface interpolation. Berlin: Springer; 2003. p. 37-49.
- Kobbelt L, Botsch M. A survey of point-based techniques in computer graphics. Computers & Graphics. 2004; 28(6):801-814. https://doi.org/10.1016/j.cag.2004.08.009
- Azariadis PN, Sapidis NS. Drawing curves onto a cloud of points for point-based modeling. Computer-Aided Design. 2005; 37:109-122. https://doi.org/10.1016/j.cad.2004.05.004
- Liu YS, Paul JC, Yong JH, Yu PQ, Zhang H, Sun JG, Ramani K. Automatic least-squares projection of points onto point cloudes with applications in reverse engineering. Computer- Aided Design. 2006; 38:1251-1263. https://doi.org/10.1016/j.cad.2006.09.001
- Du MC, Liu YS. An extension on robust directed projection of points onto point clouds. Computer-Aided Design. 2008; 40:537-553. https://doi.org/10.1016/j.cad.2008.01.010
- Zhang Y, Ge L. Improved moving least squares algorithm for directed projecting onto point clouds. Measurement. 2011; 44:2008-2019. https://doi.org/10.1016/j.measurement.2011.08.015
Cited by
- Analysis of wave reflection of a stenotic vessel blood pressure wave using the lattice Boltzmann method and impedance boundary condition vol.30, pp.8, 2016, https://doi.org/10.1007/s12206-016-0734-0
- On perturbation bounds for orthogonal projections vol.73, pp.2, 2016, https://doi.org/10.1007/s11075-016-0102-2
- Hybrid Second-Order Iterative Algorithm for Orthogonal Projection onto a Parametric Surface vol.9, pp.8, 2017, https://doi.org/10.3390/sym9080146