DOI QR코드

DOI QR Code

Predicted Impacts of Climate Change on Dairy Cattle using Temperature Humidity Index (THI)

온습도지수를 활용한 젖소의 기후변화 영향변동 예측

  • 김별 (전북대학교 축산학과) ;
  • 임정수 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 조성백 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 황옥화 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 양승학 (농촌진흥청 국립축산과학원 축산환경과)
  • Received : 2014.05.16
  • Accepted : 2014.06.08
  • Published : 2014.06.30

Abstract

The climate of the earth is expected to change rapidly and continuously. Despite climate change is expected to impact on productivity of crop and livestock, a study for adaptation and impact of livestock to global warming is not enough. This study was performed to develop a method to evaluate the effects of heat stress on dairy cattle. Feedlot environment and health status of livestock were measured through an infrared thermography camera and a temperature-humidity sensor. Environmental factors such as temperature and humidity were measured to calculate the Temperature humidity index (THI). The change of the milk yield was similar to THI data pattern, suggesting that THI might play an important role to predict the effect of climate change on dairy cattle. THI data would be useful to predict long-term climate change effects on dairy cattle with RCP8.5 scenario.

Keywords

References

  1. Abeni, F., Maianti, M.G., Calamari, L., Cappa, V., Stefanini, L., 1993. Effects of heat stress on lactating dairy cows and feeding strategy to reduce its impact on milk yield and quality. Annali della Facolta di Agraria. 33, 151-170.
  2. Akyuz, A., Boyaci, S., Cayli, A., 2010. Determination of critical period for dairy cows using temperature humidity index. J. Anim. Vet. Adv. 9(13), 1824-1827. https://doi.org/10.3923/javaa.2010.1824.1827
  3. Armstrong, D.V., 1994. Heat stress interactions with shade and cooling. J. Dairy Sci. 77, 2044-2050. https://doi.org/10.3168/jds.S0022-0302(94)77149-6
  4. Berry, R.J., Kennedy, A.D., Scott, S.L., Kyle, B.L., Schaefer, A.L., 2003. Daily variation in the udder surface temperature of dairy cows measured by infrared thermography: potential for mastitis detection. Can. J. Anim. Sci. 83, 687-693. https://doi.org/10.4141/A03-012
  5. Bohmanova, J., Misztal, I., Cole, J.B., 2007. Temperature-Humidity Indices as Indicators of Milk Production Losses due to Heat Stress. J. Dairy Sci. 90, 1947-1956. https://doi.org/10.3168/jds.2006-513
  6. Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, Mand., Belyea, R., 2002. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 51, 479-491. https://doi.org/10.1051/animres:2002036
  7. Chase, L.E., 2006. Climate Change Impacts on Dairy Cattle. Climate Change and Agriculture: Promoting Practical and Profitable Responses. Cornell University, Ithaca, NY. Online: http://climateandfarming.org/pdfs/FactSheets/III.3Cattle.pdf
  8. Correa-Calderon, A., Armstrong, D., Ray, D., DeNise, S., Enns, M., Howison, C., 2004. Thermoregulatory responses of Holstein and Brown Swiss heat-stressed dairy cows to two different cooling systems. Int. J. Biometeorol. 48, 142-148. https://doi.org/10.1007/s00484-003-0194-y
  9. Du Preez, J.H., Giesecke, W.H., Hattingh, P.J., 1990. Heat stress in dairy cattle and other livestock under Southern African conditions. Temperature-humidity indexmean values during the four main seasons, Onderstepoort J. Vet. Res. 57, 77-86.
  10. Gu, H.S., 2009. The impact of climate change on livestock: Research trends in foreign countries livestock. J. Climate. 4(2), 110-117.
  11. Igono, M.O., Steevens, B.J., Shanklin, M.D., Johnson, H.D., 1985. Spray cooling effects on milk production, milk, and rectal temperatures of cows during a moderate temperate summer season. J. Dairy Sci. 68, 979-985. https://doi.org/10.3168/jds.S0022-0302(85)80918-8
  12. Igono, M.O., Johnson, H.D., 1990. Physiological stress index of lactating dairy cows based on diurnal pattern of rectal temperature. J. Interdiscip. Cycle Res. 21, 303-320.
  13. Intergovernmental Panel on Climate Change (IPCC: AR5)., 2013. WGII The Intergovernmental Panel on Climate Change 5th Assessment Report.
  14. Johnson, H.D., 1980. Environmental management of cattle to minimize the stress of climate changes, Int. J. Biometeor. 24 (Suppl. 7, Part 2), 65-78. https://doi.org/10.1007/BF02245543
  15. Johnson, H.D., 1985. Physiological responses and productivity of cattle, in: Yousef M.K. (Ed.), Stress physiology in livestock. Basic principles, CRC Press, Boca Raton, Florida. 1, 4-19.
  16. Johnson, S.R., Rao, S., Hussey, S.B., Morley, P.S., Traub-Dargatz, J.L., 2011. Thermographic eye temperature as an index to body temperature in ponies. J. Equine Vet. Sci. 31, 63-66. https://doi.org/10.1016/j.jevs.2010.12.004
  17. Kastberger, G., Stachl, R., 2003. Infrared imaging technology and biological applications. Behav. Res. Meth. Instrum. Comput. 35, 429-439. https://doi.org/10.3758/BF03195520
  18. Kim, D.J., Kim, J.H., Roh, J.H., Yun, J.I., 2012. Geographical migration of winter barley in the korean peninsula under the RCP8.5 projected climate condition. KJAFM. 14(4), 161-169. https://doi.org/10.5532/KJAFM.2012.14.4.161
  19. Knizkova, I., Kunc, P., Gurdil, G.A.K., Pinar, Y., Selvi, K.C., 2007. Applications of infrared thermography in animal production. J. Fac. Agric. OMU. 22, 329-336.
  20. Kucevic, D., Plavsic, M., Trivunovic, S., Radinovic, M., Bogdanovic, V., 2013. Influence of microclimatic conditions on the daily production of dairy cows. Biotechnol. Anim. Husb. 29(1), 45-51. https://doi.org/10.2298/BAH1301045K
  21. Mc Dowell, R.E., Hooven, N.W., Camoens, J.K., 1976. Effects of climate on performance of Holsteins in first lactation. J. Dairy Sci. 59, 965-973. https://doi.org/10.3168/jds.S0022-0302(76)84305-6
  22. National Research Council. 1971. A guide to environmental research on animals. Natl. Acad. Sci., Washington, DC.
  23. Poikalainen, V., Praks, J., Veermae, I., Kokin, E., 2012. Infrared temperature patterns of cow's body as an indicator for health control at precision cattle farming. Agronomy Research: Biosystem Engineering Special Issue 1, 187-194.
  24. Rainwater-Lovett, K., Pacheco, J.M., Packer, C., Rodriguez, L.L., 2009. Detection of foot-and-mouth disease virus infected cattle using infrared thermography. Vet. J. 180, 317-324. https://doi.org/10.1016/j.tvjl.2008.01.003
  25. Ravagnolo, O., Misztal, I., 2000. Genetic component of heat stress in dairy cattle, parameter estimation. J. Dairy Sci. 83, 2126-2130. https://doi.org/10.3168/jds.S0022-0302(00)75095-8
  26. Schaefer, A.L., Cook, N.J., Tessaro, S.V., Deregt, D., Desroches, G., Dubeski, P.L., Tong, A.K.W., Godson, D.L., 2004. Early detection and prediction of infection using infrared thermography. Can. J. Anim. Sci. 84, 73-80. https://doi.org/10.4141/A02-104
  27. Schaefer, A.L., Cook, N.J., Bench, C., Chabot, J.B., Colyn, J., Liu, T., Okine, E.K., Stewart, M., Webster, J.R., 2012. The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Res. Vet. Sci. 93, 928-935. https://doi.org/10.1016/j.rvsc.2011.09.021
  28. Stewart, M., Webster, J.R., Schaefer, A.L., Cook, N.j., Scott, S.L., 2005. Infrared thermography as a non-invasive tool to study animal welfare. Anim. Welf. 14:319-325.
  29. St-Pierre, N.R., Cobanov, B., Schnitkey, G., 2003. Economic loses from heat stress by US livestock industries. J. Dairy Sci. 86(E Suppl.), 52-77. https://doi.org/10.3168/jds.S0022-0302(03)73583-8
  30. West, J.W., 2003. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 86, 2131-2144. https://doi.org/10.3168/jds.S0022-0302(03)73803-X
  31. Whittier, J.C., 1993. Hot weather livestock stress. Univ. Missouri. Ext. Bull. Mt. Vernon. G2099.