DOI QR코드

DOI QR Code

A review of the effects of environmental enrichment on stroke in animal experimental models

뇌졸중 동물 실험 모델에서 환경 강화 효과에 대한 종설

  • 이경희 (백석대학교 작업치료학과) ;
  • 황기철 (백석대학교 작업치료학과)
  • Received : 2014.06.20
  • Accepted : 2014.08.20
  • Published : 2014.08.28

Abstract

The purpose of this article is to present the environmental enrichment(EE) method used to improve the functional recovery and change of brain plastic in animal experimental models of stroke. In animal experimental models of stroke, the environmental enrichment is effective in altering the morphological, biochemical and behavioral characteristics of the brain and thereby improving the functional outcomes. In this review article, we address the effects of EE in achieving a functional recovery in animal experimental models of stroke, thus attempting to describe them in patients with stroke from both occupational and rehabilitation perspectives.

본 연구의 목적은 뇌졸중 동물 실험 모델에서 환경 강화는 기능 회복을 향상 시키고 이로 인하여 뇌에 형태학적, 생화학과 행동에서 특징적인 변화와 그 효과들을 소개하고, 뇌졸중 환자에 환경 강화의 적용은 재활치료 및 작업치료를 포함한 다양 치료와 전 임상 실험의 중요성을 설명하고자 한다. 이 종설 논문에서는 주로 뇌졸중 동물 실험 모델에서 환경 강화로 인한 기능적 회복에 대한 효과와 신경 친화성 물질, 특정 단백질의 발현 및 임상 적용 사례 등의 연구 결과들을 소개하였다. 마지막으로 임상에서 뇌졸중 환자에게 환경 강화의 적용 가능성과 작업치료 및 재활치료의 관점에서 설명하였다.

Keywords

References

  1. Nygren J, Wieloch T. Enriched environment enhances recovery of motor function after focal ischemia in mice, and downregulates the transcription factor NGFI-A. J Cereb Blood Flow Metab, Vol. 25, No. 12: 1625-1633, 2005. https://doi.org/10.1038/sj.jcbfm.9600157
  2. de Freitas GR, Bogousslavsky J. Primary stroke prevention. Eur J Neurol, Vol. 8, No. 1, pp. 1-15, 2001.
  3. Biernaskie J, Corbett D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci, Vol. 21, No. 14, pp. 5272-5280, 2001.
  4. Calabro RS, Reitano S, Leo A, De Luca R, Melegari C, Bramanti P. Can robot-assisted movement training (Lokomat) improve functional recovery and psychological well-being in chronic stroke? Promising findings from a case study. Funct Neurol; Early view, Vol. 235 , No. 3, pp. 1-3, 2014.
  5. Zadravec M, Matjacic Z. Toward minimum effort reaching trajectories formation in robot-based rehabilitation after stroke: an innovative guidance scheme proposition. Int J Rehabil Res, Vol. 20, No. 5, pp. 523-542, 2014.
  6. Li L, Tang BL. Environmental enrichment and neurodegenerative diseases. Biochem Biophys Res Commun, Vol. 334, No. 2, pp. 293-7, 2005. https://doi.org/10.1016/j.bbrc.2005.05.162
  7. Risedal A, Mattsson B, Dahlqvist P, Nordborg C, Olsson T, Johansson BB. Environmental influences on functional outcome after a cortical infarct in the rat. Brain Res Bull, Vol. 58, No. 3, pp. 315-321, 2002. https://doi.org/10.1016/S0361-9230(02)00796-7
  8. Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci, Vol. 7, No. 9, pp. 697-709, 2006. https://doi.org/10.1038/nrn1970
  9. Dahlqvist P, Ronnback A, Bergstrom SA, Soderstrom I, Olsson T. Environmental enrichment reverses learning impairment in the Morris water maze after focal cerebral ischemia in rats. Eur J Neurosci, Vol. 19, No. 8, pp. 2288-2298, 2004. https://doi.org/10.1111/j.0953-816X.2004.03248.x
  10. Duffy SN, Craddock KJ, Abel T, Nguyen PV. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learn Mem, Vol. 8, No. 1, pp. 26-34, 2001. https://doi.org/10.1101/lm.36301
  11. Bennett JC, McRae PA, Levy LJ, Frick KM. Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiol Learn Mem, Vol. 85, No. 2, pp. 139-152, 2006. https://doi.org/10.1016/j.nlm.2005.09.003
  12. Frick KM, Fernandez SM. Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiol Aging, Vol. 24, No. 4, pp. 615-626, 2003. https://doi.org/10.1016/S0197-4580(02)00138-0
  13. Huang FL, Huang KP, Wu J, Boucheron C. Environmental enrichment enhances neurogranin expression and hippocampal learning and memory but fails to rescue the impairments of neurogranin null mutant mice. J Neurosci Vol. 26, No. 23, pp. 6230-6237, 2006. https://doi.org/10.1523/JNEUROSCI.1182-06.2006
  14. Tang AC. Neonatal exposure to novel environment enhances hippocampal-dependent memory function during infancy and adulthood. Learn Mem, Vol. 8, No. 5, pp. 257-264, 2001. https://doi.org/10.1101/lm.43101
  15. Wagner AK, Kline AE, Sokoloski J, Zafonte RD, Capulong E, Dixon CE. Intervention with environmental enrichment after experimental brain trauma enhances cognitive recovery in male but not female rats. Neurosci Lett, Vol. 334, No. 3, pp. 165-168, 2002. https://doi.org/10.1016/S0304-3940(02)01103-5
  16. Polito L, Chierchia A, Tunesi M, Kehoe PG, Albani D, Forloni G. Environmental Enrichment Lessens Cognitive Decline in APP23 Mice Without Affecting Brain Sirtuin Expression. J Alzheimers Dis, Vol. 254, No. 1, pp. 526-548, 2014.
  17. Hu YS, Xu P, Pigino G, Brady ST, Larson J, Lazarov O. Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer's disease-linked APPswe/PS1DeltaE9 mice. FASEB J, Vol. 24, No. 6, pp. 1667-1681, 2010. https://doi.org/10.1096/fj.09-136945
  18. Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L. Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ, Vol. 17, No. 7, pp. 1092-1103, 2010. https://doi.org/10.1038/cdd.2009.193
  19. Lee MY, Yu JH, Kim JY, Seo JH, Park ES, Kim CH, Kim H, Cho SR. Alteration of synaptic activity-regulating genes underlying functional improvement by long-term exposure to an enriched environment in the adult brain. Neurorehabil Neural Repair, Vol. 27, No. 6, pp. 561-574, 2013. https://doi.org/10.1177/1545968313481277
  20. Lonetti G, Angelucci A, Morando L, Boggio EM, Giustetto M, Pizzorusso T. Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol Psychiatry, Vol. 67, No. 7, pp. 657-665, 2010. https://doi.org/10.1016/j.biopsych.2009.12.022
  21. Mainardi M, Landi S, Gianfranceschi L, Baldini S, De Pasquale R, Berardi N, Maffei L, Caleo M. Environmental enrichment potentiates thalamocortical transmission and plasticity in the adult rat visual cortex. J Neurosci Res, Vol. 88, No. 14, pp. 3048-3059, 2010. https://doi.org/10.1002/jnr.22461
  22. Zhang H, Cai R, Zhang J, Pan Y, Sun X. Environmental enrichment enhances directional selectivity of primary auditory cortical neurons in rats. Neurosci Lett, Vol. 463, No. 2, pp. 162-165, 2009. https://doi.org/10.1016/j.neulet.2009.07.054
  23. Zai L, Ferrari C, Dice C, Subbaiah S, Havton LA, Coppola G, Geschwind D, Irwin N, Huebner E, Strittmatter SM, Benowitz LI. Inosine augments the effects of a Nogo receptor blocker and of environmental enrichment to restore skilled forelimb use after stroke. J Neurosci, Vol. 31, No. 16, pp. 5977-5988, 2011. https://doi.org/10.1523/JNEUROSCI.4498-10.2011
  24. Ronnback A, Dahlqvist P, Svensson PA, Jernas M, Carlsson B, Carlsson LM, Olsson T. Gene expression profiling of the rat hippocampus one month after focal cerebral ischemia followed by enriched environment. Neurosci Lett, Vol. 385, No. 2, pp. 173-178, 2005. https://doi.org/10.1016/j.neulet.2005.05.016
  25. Sun H, Zhang J, Zhang L, Liu H, Zhu H, Yang Y. Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Curr Neurovasc Res, Vol. 7, No. 4, pp. 268-280, 2010. https://doi.org/10.2174/156720210793180819
  26. Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, Fabbri ME, Tessarollo L, Maffei L, Berardi N, Caleo M. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci, Vol. 24, No. 7, pp. 1850-1856, 2006. https://doi.org/10.1111/j.1460-9568.2006.05059.x
  27. Pham TM, Winblad B, Granholm AC, Mohammed AH. Environmental influences on brain neurotrophins in rats. Pharmacol Biochem Behav, Vol. 73, No. 1, pp. 167-175, 2002. https://doi.org/10.1016/S0091-3057(02)00783-9
  28. Inacio AR, Ruscher K, Wieloch T. Enriched environment downregulates macrophage migration inhibitory factor and increases parvalbumin in the brain following experimental stroke. Neurobiol Dis, Vol. 41, No. 2, pp. 270-278, 2011. https://doi.org/10.1016/j.nbd.2010.09.015
  29. Pinaud R. Experience-dependent immediate early gene expression in the adult central nervous system: evidence from enriched-environment studies. Int J Neurosci, Vol. 114, No. 3, pp. 321-33, 2004. https://doi.org/10.1080/00207450490264142
  30. Rosenzweig MR. Effects of differential experience on the brain and behavior. Dev Neuropsychol, Vol. 24, No. 2-3, pp. 523-540, 2003. https://doi.org/10.1080/87565641.2003.9651909
  31. Rosenzweig MR, Bennett EL, Diamond MC. Effects of differential environments on brain anatomy and brain chemistry. Proc Annu Meet Am Psychopathol Assoc, Vol. 56, pp. 45-56, 1967.
  32. Rosenzweig MR, Bennett EL. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res, Vol. 78, No. 1, pp. 57-65, 1996. https://doi.org/10.1016/0166-4328(95)00216-2
  33. Buchhold B, Mogoanta L, Suofu Y, Hamm A, Walker L, Kessler C, Popa-Wagner A. Environmental enrichment improves functional and neuropathological indices following stroke in young and aged rats. Restor Neurol Neurosci, Vol. 25, No. 5-6, pp. 467-484, 2007.
  34. Komitova M, Mattsson B, Johansson BB, Eriksson PS. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke, Vol. 36, No. 6, pp. 1278-1282, 2005. https://doi.org/10.1161/01.STR.0000166197.94147.59
  35. Johansson BB, Belichenko PV. Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and postischemic rat brain. J Cereb Blood Flow Metab, Vol. 22, No. 1, pp. 89-96, 2002. https://doi.org/10.1097/00004647-200201000-00011
  36. Knieling M, Metz GA, Antonow-Schlorke I, Witte OW. Enriched environment promotes efficiency of compensatory movements after cerebral ischemia in rats. Neuroscience, Vol. 163, No. 3, pp. 759-769, 2009. https://doi.org/10.1016/j.neuroscience.2009.07.004
  37. Passineau MJ, Green EJ, Dietrich WD. Therapeutic effects of environmental enrichment on cognitive function and tissue integrity following severe traumatic brain injury in rats. Exp Neurol, Vol. 168, No. 2, pp. 373-384, 2001. https://doi.org/10.1006/exnr.2000.7623
  38. Puurunen K, Jolkkonen J, Sirvio J, Haapalinna A, Sivenius J. Selegiline combined with enriched-environment housing attenuates spatial learning deficits following focal cerebral ischemia in rats. Exp Neurol, Vol. 167, No. 2, pp. 348-355, 2001. https://doi.org/10.1006/exnr.2000.7563
  39. Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci, Vol. 24, No. 5, pp. 1245-1254, 2004. https://doi.org/10.1523/JNEUROSCI.3834-03.2004
  40. Komitova M, Perfilieva E, Mattsson B, Eriksson PS, Johansson BB. Effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis and differentiation in the adult rat. J Cereb Blood Flow Metab, Vol. 22, No. 7, pp. 852-860, 2002. https://doi.org/10.1097/00004647-200207000-00010
  41. Diamond MC, Law F, Rhodes H, Lindner B, Rosenzweig MR, Krech D, Bennett EL. Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol, Vol. 128, No. 1, pp. 117-26, 1966. https://doi.org/10.1002/cne.901280110
  42. Zhao LR, Risedal A, Wojcik A, Hejzlar J, Johansson BB, Kokaia Z. Enriched environment influences brain-derived neurotrophic factor levels in rat forebrain after focal stroke. Neurosci Lett, Vol. 305, No. 3, pp. 169-172. 2001. https://doi.org/10.1016/S0304-3940(01)01837-7
  43. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, Kong E, Larraburo Y, Rolle C, Johnston E, Gazzaley A. Video game training enhances cognitive control in older adults. Nature, Vol. 501, No. 7465, pp. 97-101, 2013. https://doi.org/10.1038/nature12486
  44. Kuipers P, Foster M, Smith S, Fleming J. Using ICF-Environment factors to enhance the continuum of outpatient ABI rehabilitation: an exploratory study. Disabil Rehabil, Vol. 31, No. 2, pp. 144-151, 2009. https://doi.org/10.1080/01674820701817938
  45. Risedal A, Zeng J, Johansson BB. Early training may exacerbate brain damage after focal brain ischemia in the rat. J Cereb Blood Flow Metab, Vol. 19, No. 9, pp. 997-1003, 1999. https://doi.org/10.1097/00004647-199909000-00007
  46. Lee KH, Kim JH, Choi DH, Lee J. Effect of task-specific training on functional recovery and corticospinal tract plasticity after stroke. Restor Neurol Neurosci, Vol. 31, No. 6, pp. 773-785, 2013.