References
- G. Adomavicius, & A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Transactions on Knowledge & Data Engineering, IEEE, Vol. 17, No. 6, pp. 734-749, 2005. https://doi.org/10.1109/TKDE.2005.99
- S. Han, S. Chee, J. Han, & K. Wang, RecTree: An efficient collaborative filtering method, The 3rd International Conference on Data Warehousing and Knowledge Discovery, pp. 141-151, 2001.
- X. Su, & T. M. Khoshgoftaar, Collaborative filtering for multi-class data using belief nets algorithms, The 13th International Conference on Tools with Artificial Intelligence, IEEE, pp. 497-504, 2006.
- R. Greiner, X. Su, B. Shen, & W. Zhou, Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers, The Eighteenth Annual National Conference on Artificial Intelligence, pp. 167-173, 2002.
- T. Hofmann, Latent semantic models for collaborative filtering, ACM Transactions on Information Systems, ACM, Vol. 22, No. 1, pp. 89-115, 2004. https://doi.org/10.1145/963770.963774
- D. Anand, & K. K. Bharadwaj, Adaptive user similarity measures for recommender systems: A genetic programming approach, The 3rd IEEE International Conference on Computer Science and Information Technology, pp. 121-125, 2010.
- J. Bobadilla, F. Ortega, A. Hernando, & J. Alcala, Improving collaborative filtering recommender system results and performance using genetic algorithms, Knowledge-Based Systems, Elsevier Science Inc., Vol. 24, No. 8, pp. 1310-1316, 2011. https://doi.org/10.1016/j.knosys.2011.06.005
- C. Baoxian, M. Fei, & L. Sujuan, A collaborative filtering recommendation algorithm based on user topic preference, International Journal of Advancements in Computing Technology, AICIT, Vol. 4, No. 14, pp. 342-351, 2012. https://doi.org/10.4156/ijact.vol4.issue14.39
- J. Bobadilla, A. Hernando, F. Ortega, & A. Gutierrez, Collaborative filtering based on significances, Information Sciences, Elsevier Science Inc., Vol. 185, No. 1, pp. 1-17, 2012. https://doi.org/10.1016/j.ins.2011.09.014
- X. Tang, W. Deng, & J. Liu, A personalized recommendation method based on comprehensive interest, International Journal of Advancements in Computing Technology, AICIT, Vol. 5, No. 5, pp. 157-164, 2013.
- H. J. Ahn, A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem, Information Sciences, Elsevier Science Inc., Vol. 178, No. 1, pp. 37-51, 2008. https://doi.org/10.1016/j.ins.2007.07.024
- P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, & J. Riedl, GroupLens: An open architecture for collaborative filtering of netnews, Proceedings of the ACM Conference on Computer Supported Cooperative Work, pp. 175-186, 1994.
- J. Bobadilla, F. Serradilla, & J. Bernal, A new collaborative filtering metric that improves the behavior of recommender systems, Knowledge-Based Systems, Elsevier Science Inc., Vol. 23, No. 6, pp. 520-528, 2010. https://doi.org/10.1016/j.knosys.2010.03.009
- G. Koutrica, B. Bercovitz, & H. Garcia-Molina, FlexRecs: Expresing and combining flexible recommendations, Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, ACM, pp. 745-758, 2009.
- J. L. Herlocker, J. A. Konstan, L. G. Terveen, & J. T. Riedl, Evaluating collaborative filtering recommender systems, ACM Transactions on Information Systems, ACM, Vol. 22, No. 1, pp. 5-53, 2004. https://doi.org/10.1145/963770.963772
- M. Gao, Z. Wu, & F. Jiang, Userrank for item-based collaborative filtering recommendation, Information Processing Letters, Elsevier Science Inc., Vol. 111, No. 9, pp. 440-446, 2011. https://doi.org/10.1016/j.ipl.2011.02.003