참고문헌
- Admi, H. and Shaham, B., Living with epilepsy: ordinary people coping with extraordinary situations, Qualitative Health Research, Vol.17, pp.1178-1187, 2007. https://doi.org/10.1177/1049732307307548
- Korean Neurological Association. Neurology, Seoul: Koonja Publishing Co., 2007.
- Abdulhamit Subasi, EEG signal classification using wavelet feature extraction and a mixture of expert model, Expert Systems with Applications, Vol.32, Issue 4, pp.1084-1093, 2007. https://doi.org/10.1016/j.eswa.2006.02.005
- Sang-Hong Lee and Joon S. Lim, Extracting Input Features and Fuzzy Rules for Classifying Epilepsy Based on NEWFM, Journal of Internet Computing and Services, Vol.10, No.5, pp.127-133, 2009.
- Joon S. Lim, Finding Features for Real-Time Premature Ventricular Contraction Detection Using a Fuzzy Neural Network System, IEEE Transactions on Neural Networks, Vol.20, No.3, pp.522-527, 2009. https://doi.org/10.1109/TNN.2008.2012031
- Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. E., Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Physical Review E, 64, 061907, 2001. https://doi.org/10.1103/PhysRevE.64.061907
- Minh Hoai Nguyen and Fernando de la Torre, Optimal feature selection for support vector machines, Pattern Recognition, Vol.43, pp.584-591, 2010. https://doi.org/10.1016/j.patcog.2009.09.003
- Patricia E.N. Lutu and Andries P. Engelbrecht, A decision rule-based method for feature selection in predictive data mining, Expert Systems with Applications, Vol.37, pp.602-609, 2010. https://doi.org/10.1016/j.eswa.2009.06.031
- Kabir M, Shahjahan, and Murase K, A new local search based hybrid genetic algorithm for feature selection, Neurocomputing, Vol.74, pp.2914-2928, 2011. https://doi.org/10.1016/j.neucom.2011.03.034
- Lee CP and Leu Y, A novel hybrid feature selection method for microarray data analysis, Applied Soft Computing, Vol.11, pp.208-213, 2011. https://doi.org/10.1016/j.asoc.2009.11.010
- F Shayegha, S Sadria, R Amirfattahia, K Ansari-Aslb. A model-based method for computation ofcorrelation dimension, Lyapunov exponents andsynchronization from depth-EEG signals, COMPUT METH PROG BIO, Vol.113, pp.323-337, 2014. https://doi.org/10.1016/j.cmpb.2013.08.014
- Guler NH, UbeyliED, Guler I. Recurrent neural networks employing Lyapunov exponents for EEG signal classification, Expert Sys Appl, Vol.25, pp.506-514, 2005.
- Lehnertz K, Elger CE. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss, Electroencephalogr Clin Neurophysiol, Vol.95, pp.108-117, 1995. https://doi.org/10.1016/0013-4694(95)00071-6
- Avci E, Hanbay D, Varol A. An expert discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition, Expert Syst Appl, Vol.33, pp.582-589, 2007. https://doi.org/10.1016/j.eswa.2006.06.001
- Guler I, Ubeyli ED. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients, J Neurosci Methods, Vol.148, pp.113-121, 2005. https://doi.org/10.1016/j.jneumeth.2005.04.013
- Chandaka S, Chatterjee A, Munshi S. Cross-correlation aided support vector machine classifier for classification of EEG signals, Expert Syst Appl, Vol.36, pp.1329-1336, 2009. https://doi.org/10.1016/j.eswa.2007.11.017
- Ling G., Daniel R., Jose A.S., Alejandro P. Classification of EEG Signals Using Relative Wavelet Energy and Artificial Neural Networks, GEC (June), pp.177-183, 2009.
- M. Setnes and H. Roubos, GA-Fuzzy Modeling and Classification : Complexity and Performance, IEEE Trans., Fuzzy Systems, Vol.8, No.5, pp.509-522, 2000. https://doi.org/10.1109/91.873575
- Kemal Polat and Salih Gunes, Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals, Expert Systems with Applications, Vol.34, Issue 3, pp.2039-2048, 2008 https://doi.org/10.1016/j.eswa.2007.02.009