DOI QR코드

DOI QR Code

Security Verification of a Communication Authentication Protocol in Vehicular Security System

자동차 보안시스템에서 통신 인증프로토콜의 보안성 검증

  • Han, Myoungseok (Dept. of Automobile Digital Tuning, Ajou Motor College) ;
  • Bae, WooSik (Dept. of AIS Center, Ajou Motor College)
  • 한명석 (아주자동차대학 자동차디지털튜닝전공) ;
  • 배우식 (아주자동차대학)
  • Received : 2014.05.29
  • Accepted : 2014.08.20
  • Published : 2014.08.28

Abstract

Vehicular electronic communication system has continued to develop in favor of high performance and user convenience with the evolution of auto industry. Yet, due to the nature of communication system, concerns over intruder attacks in transmission sections have been raised with a need for safe and secure communication being valued. Any successful intruder attacks on vehicular operation and control systems as well as on visual equipment could result in serious safety and privacy problems. Thus, research has focused on hardware-based security and secure communication protocols. This paper proposed a safe and secure vehicular communication protocol, used the formal verification tool, Casper/FDR to test the security of the proposed protocol against different types of intruder attacks, and verified that the proposed protocol was secure and ended without problems.

자동차산업의 발전과 함께 차량전자통신시스템이 고성능화 되어가고 있으며 사용자 편의 면에서도 상당히 많은 발전을 거듭해가고 있다. 그러나 통신시스템의 특성상 전송구간에서 공격자의 공격에 대한 문제가 제기되고 있으며 안전한 통신에 대한 필요성이 중요시 되고 있다. 자동차의 운행, 제어계통 및 영상장비 등에 공격자의 공격이 성공하게 되면 안전 및 프라이버시에 심각한 문제가 발생하게 된다. 따라서 하드웨어적인 보안 및 보안통신프로토콜에 대한 연구가 중요한 부분으로 이루어지고 있다. 본 논문에서는 안전한 차량 통신프로토콜을 제안하며 공격자의 각종 공격에 안전한 프로토콜을 정형검증도구인 Casper/FDR 도구를 이용하여 실험하였으며 제안 프로토콜이 안전하며 문제없이 종료됨을 확인하였다.

Keywords

References

  1. Stephen C., Damon M., Brain K., Danny A., Hovav S., Stefan S., Karl K., Alexei C., Franziska R. and Tadayoshi K., Comprehensive experimental analyses of automotive attack surfaces. SEC, Vol. 11, pp. 1-16, 2011.
  2. P. Papadimitratos, A. de La Fortelle, K. Evensen, R. Brignolo, and S. Cosenza, Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine, Vol. 11, No. 1, pp. 84-95, 2009.
  3. ISO 26262, Road vehicles - Functional safety, Management of functional safety & Concept phase
  4. P. Papadimitratos, V. Gligor, and J.-P. Hubaux, Securing Vehicular Communications Assumptions, Requirements, and Principles. Workshop on Embedded Security in Cars(ESCAR), Berlin, Germany, 2006.
  5. G. Lowe. Casper: A compiler for the analysis of security protocols. User Manual and Tutorial. Version 1.12, 2009.
  6. Formal Systems(Europe) Ltd, Oxford University Computing Laboratory, Failures-Divergence Renement. FDR2 User Manual, 19th, October 2010.
  7. PRESERVE(PREparing SEcuRe VEhicle-to-X Communication Systems)Deliverable 1.1, Security Requirements of Vehicle Security Architecture. June 2011.
  8. C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall. 1985.
  9. A. Festag, P. Papadimitratos, and T. Tielert, Design and Performance of Secure Geo-cast for Vehicular Communication. IEEE Transactions on Vehicular Technology (IEEE TVT), Vol. 59, No. 5, pp. 1-16, 2010. https://doi.org/10.1109/TVT.2010.2044608
  10. N. Ristanovic, P. Papadimitratos, G. Theodorakopoulos, J.-P. Hubaux and J.-Y. Le Boudec, Adaptive Message Authentication for Multi-Hop Networks. IEEE/IFIP International Conference on Wireless On-demand Network Systems and Services (IEEE/IFIP WONS), Bardonecchia, Italy, 2011.