DOI QR코드

DOI QR Code

Molecular Identification of Trichogramma (Hymenoptera: Trichogrammatidae) Egg Parasitoids of the Asian Corn Borer Ostrinia furnacalis, Based on ITS2 rDNA Sequence Analysis

ITS2 rDNA 염기서열 분석을 통한 Trichogramma 속(벌목: 알벌과)의 조명나방 알기생벌에 대한 종 추정

  • Seo, Bo Yoon (Crop Protection Division, National Academy of Agricultural Science, Rural Developmental Administration) ;
  • Jung, Jin Kyo (Crop Environment Research Division, National Institute of Crop Science, Rural Developmental Administration) ;
  • Park, Ki Jin (Maize Experiment Station, Gangwondo Agricultural Research and Extension Services) ;
  • Cho, Jum Rae (R&D Coordination Division, Research Policy Bureau, Rural Developmental Administration) ;
  • Lee, Gwan-Seok (Crop Protection Division, National Academy of Agricultural Science, Rural Developmental Administration) ;
  • Jung, Chung Ryul (Molecular biology Lab, Department of Biology, Kyungsung University)
  • 서보윤 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 정진교 (국립식량과학원 작물환경과) ;
  • 박기진 (강원도농업기술원 옥수수연구소) ;
  • 조점래 (농촌진흥청 연구정책국 연구운영과) ;
  • 이관석 (국립농업과학원 농산물안전성부 작물보호과) ;
  • 정충렬 (경성대학교 생물학과)
  • Received : 2014.02.14
  • Accepted : 2014.07.01
  • Published : 2014.09.01

Abstract

To identify the species of Trichogramma occurring in the corn fields of Korea as egg parasitoids of Ostrinia furnacalis, we sequenced the full-length of ITS2 nuclear rDNA from 112 parasitoids collected during this study. As a reference to distinguish species, we also retrieved full-length ITS2 sequences of 60 Trichogramma species from the NCBI GenBank database. On the basis of the size and 3'terminal sequence pattern of the ITS2 sequences, the Trichogramma samples collected in this study were divided into three groups (K-1, -2, and -3). Evolutionary distances (d) within and between groups based on ITS2 sequences were estimated to be ${\leq}0.005$ and ${\geq}0.080$, respectively. In the net average distance between groups or species, the d value between K-1 and T. ostriniae, K-2 and T. dendrolimi, and K-3 and T. confusum was the lowest, with values of 0.016, 0.001, and 0.002, respectively. In the phylogenetic tree, K-1 and K-2 were clustered with T. ostriniae and T. dendrolimi, respectively. However, K-3 was clustered with three different species, namely, T. confusum, T. chilonis, and T. bilingensis. NCBI BLAST results revealed that parasitoids belonging to K-1 and K-2 showed 99% identity with T. ostriniae and T. dendrolimi, respectively. Parasitoids in K-3 collected from Hongcheon showed 99-100% identity with T. confusum and T. chilonis, and one parasitoid in K-3 collected from Gochang had 98% identity with T. bilingensis, T. confusum, and T. chilonis. On the basis of these results, we infer that the species of Trichogramma collected in this study are closely related to T. ostriniae (K-1) and T. dendrolimi (K-2). However, it was not possible to distinguish species of K-3 using the ITS2 sequence alone.

옥수수 포장에서 발생하는 Trichogramma속 조명나방 알기생벌의 종 분포를 조사하기 위해 채집된 알기생벌로부터 핵내 ITS2 DNA 전체 염기서열 정보를 해독하였다. 그리고 종 구별을 위한 참고정보로 NCBI GenBank에 등록된 Trichogramma속 60종의 ITS2 전체 염기서열을 확보하여 비교하였다. 국내 채집 알기생벌은 ITS2 DNA 길이와 3' 말단 염기서열 패턴에 따라 3개 그룹(K-1, -2, -3)으로 구분되었다. 국내 채집 그룹 내 염기서열 차이 추정값(Evolutionary distance, d)은 0.005 이하로 그룹 간 비교 시 d 값(${\geq}0.080$)보다 낮았다. 그룹 및 GenBank 등록 종 간 비교시 K-1은 T. ostriniae, K-2는 T. dendrolimi, K-3은 T. confusum과 d 값이 각각 0.016, 0.001, 0.002로 가장 작았다. 추론된 분자계통수에서 K-1은 T. ostriniae, K-2는 T. dendrolimi와 각각 분지되었으나 K-3는 T. confusum, T. chilonis, T. bilingensis와 함께 분지되었다. NCBI BLAST 결과에서도 K-1은 T. ostriniae와 K-2는 T. dendrolimi와 99% identity를 보였다. 그러나 K-3의 홍천 채집 기생벌들은 T. confusum, T. chilonis와 99-100% identity를 보였지만, 고창 채집 기생벌은 T. bilingensis, T. confusum, T. chilonis와 98% identity를 보였다. 이상의 분석 결과 본 연구에서 채집된 알기생벌 K-1과 K-2는 각각 T. ostriniae와 T. dendrolimi, 단일한 종으로 추정되었으나 K-3는 ITS2 정보만으로 종을 추정하기 어려웠다.

Keywords

References

  1. Amornsak, W., Gordh, G., Graham, G., 1998. Detecting parasitised eggs with polymerase chain reaction and DNA sequence of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae). Australian J. Entomol. 37, 174-179. https://doi.org/10.1111/j.1440-6055.1998.tb01567.x
  2. Ciociola, A.I.Jr. Zucchi, R.A., Stouthamer, R., 2001a. Molecular key to seven Brazilian species of Trichogramma (Hymenoptera: Trichogrammatidae) using sequences of the ITS2 region and restriction analysis. Neotrop. Entomol. 30, 259-262. https://doi.org/10.1590/S1519-566X2001000200008
  3. Ciociola, A.I.Jr., Querino, R.B., Zucchi, R.A., Stouthamer, R., 2001b. Molecular tool for identification of closely related species of Trichogramma (Hymenoptera: Trichogrammatidae): T. rojasi Nagaraja & Nagarkatti and T. lasallei Pinto. Neotrop. Entomol. 30, 575-578. https://doi.org/10.1590/S1519-566X2001000400010
  4. Dang, X., Wen, S., He, X., Pang, X., 2005. M-PCR: a powerful method for rapid molecular identification of Trichogramma wasps (Hymenoptera: Trichogrammatidae). Insect Sci. 12, 77-85. https://doi.org/10.1111/j.1744-7917.2005.00009.x
  5. Davies, A.P., Lange, C.L., O'Neill, S.L., 2006. A rapid single-step multiplex method for discriminating between Trichogramma (Hymenoptera: Trichogrammatidae) species in Australia. J. Econ. Entomol. 99, 2142-2145. https://doi.org/10.1603/0022-0493-99.6.2142
  6. del Pino, M., Rugman-Jones, P., Hernandez-Suarez., Polaszek, A., Stouthamer, R., 2013. Rapid molecular identification of five species of Trichogramma occurring in the Canary Islands with notes on their distribution in banana groves. BioControl 58, 515-524. https://doi.org/10.1007/s10526-013-9519-x
  7. Gariepy, T.D., Kuhlmann, U., Gillot, C., Erlandson, M., 2007. Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of arthropods. J. Appl. Entomol. 13, 225-240.
  8. Hassan, S.A., 1994. Strategies to select Trichogramma species for use in biological control, in: Wajnberg, E., Hassan, S.A. (Eds.), Biological control with egg parasitoids. CAB International, Wallingford, pp. 55-71.
  9. He, Y.R., Pang, X.F., 2000. A new species of Trichogramma (Hymenoptera: Trichogrammatidae) [Abstract]. J. of South China Agric. Univ. 21, 45-46.
  10. Heimpel, G.E., de Boer, J.G., 2008. Sex determination in the Hymenoptera. Annu. Rev. Entomol. 53, 209-230. https://doi.org/10.1146/annurev.ento.53.103106.093441
  11. Hillis, D.M., Dixon, M.T., 1991. Ribosomal DNA: Molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411-426. https://doi.org/10.1086/417338
  12. Honda, J., Taylor, L., Rodriguez, J., Yashiro, N., Hirose, Y., 2006. A taxonomic review of the Japanese Trichogramma (Hymenoptera: Trichogrammatidae) with descriptions of three new species. Appl. Entomol. Zool. 41, 247-267. https://doi.org/10.1303/aez.2006.247
  13. Ishii, T., 1941. The species of Trichogramma in Japan with descriptions of two new species. Kontyu 14, 167-176.
  14. Jeong, G., Kim, H., Choi, Y., Kim, W., Park, K., Bae, S., Kim, J., Choi, J., 2010. Molecular identification of two Trichogramma species (Hymenoptera: Trichogrammatidae) in Korea. J. Asia-Pac. Entomol. 13, 41-44. https://doi.org/10.1016/j.aspen.2009.09.004
  15. Jung, J.K., Park, J.H., Im, D.J., Han, T.M., 2005. Parasitism of Trichogramma evanescens and T. ostriniae (Hymenoptera: Trichogrammatidae) to eggs of the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Pyralidae). Korean J. Appl. Entomol. 44, 43-50.
  16. Karimi, J., Darsouei, R., Hosseini, M., Stouthamer, R., 2012. Molecular characterization of Iranian Trichogrammatids (Hymenotpera: Trichogrammatidae) and their Wolbachia endosymbiont. J. Asia-Pac. Entomol. 15, 73-77. https://doi.org/10.1016/j.aspen.2011.08.004
  17. Kim, C.H., Kim, J.B., 1991. Biological control of Asian corn borer, Ostrinia furnacalis with Trichogramma dendrolimi Matsumura. Rept. RDA (Agri. Institutional Cooperation) 34, 171-175.
  18. Kim, Y., Heo, H., Kim, G.S., Hahm, E., Kim, J., Kang, S., Kwon, K., 2009. Effect of a low temperature-induced quiescence on short term storage of an egg parasitoid, Trichogramma sp. Nabis101. Korean J. Appl. Entomol. 48, 369-375. https://doi.org/10.5656/KSAE.2009.48.3.369
  19. Kumar, G.A., Jalali, S.K., Venkatesan, T., Stouthamer, R., Niranjana, P., Lalitha, Y., 2009. Internal transcribed spacer-2 restriction fragment length polymorphism (ITS-2-RFLP) tool to differentiate some exotic and indigenous trichogrammatid egg parasitoids in India. Biol. Control 49, 207-213. https://doi.org/10.1016/j.biocontrol.2009.02.010
  20. Lee, Y.B., Hwang, C.Y., Choi, K.M., Shim, J.Y., 1980. Studies on the bionomics of the oriental corn borer Ostrinia furnacalis (Guenee). Korean J. Pl. Prot. 19, 187-192.
  21. Li, Y.L., 1994. Worldwide use of Trichogramma for biological control on different crops: a survey, in: Wajnberg, E., Hassan, S.A. (Eds.), Biological control with egg parasitoids. CAB International, Wallingford, pp. 37-53.
  22. Li, Z., Zheng, L., Shen, Z., 2004. Using internally transcribed spacer 2 sequences to re-examine the taxonomic status of several cryptic species of Trichogramma (Hymenoptera: Trichogrammatidae). Eur. J. Entomol. 101, 347-358. https://doi.org/10.14411/eje.2004.049
  23. Li, Z., 2007. Molecular differentiation of the four most commonly occurring Trichogramma (Hymenoptera: Trichogrammatidae) species in China. Eur. J. Entomol. 104, 363-367. https://doi.org/10.14411/eje.2007.054
  24. Nagarkatti, S., Nagaraja, H., 1971. Redescriptions of some known species of Trichogramma, showing the importance of the male genitalia as a diagnostic character. Bull. Ent. Res. 61, 13-31. https://doi.org/10.1017/S0007485300057412
  25. Nagarkatti, S., Nagaraja, H., 1979. The status of Trichogramma chilonis Ishii (Hym. : Trichogrammatidae). Oriental Insects 13, 115-118. https://doi.org/10.1080/00305316.1979.10433549
  26. Nei, M., Kumar, S., 2000. Molecular evolution and phylogenetics. Oxford University Press. Oxford.
  27. Pinto J.D., Stouthamer, R., 1994. Systematics of the Trichogrammatidae with emphasis on Trichogramma, in: Wajnberg, E., Hassan, S.A. (Eds.), Biological control with egg parasitoids. CAB International, Wallingford, pp. 1-36.
  28. Poorjavad, N. Goldansaz, S.H., Machtelinckx, T., Tirry, L., Stouthamer, R., van Leeuwen, T., 2012. Iranian Trichogramma: ITS2 DNA characterization and natural Wolbachia infection. BioControl 57, 361-374. https://doi.org/10.1007/s10526-011-9397-z
  29. Silva, I.M.M.S., Honda, J., van Kan, F.J.P.M., Hu, J., Neto, L., Pintureau, B., Stouthamer, R., 1999. Molecular differentiation of five Trichogramma species occurring in Portugal. Biol. Control 16, 177-184. https://doi.org/10.1006/bcon.1999.0755
  30. Smith, S.M., 1996. Biological control with Trichogramma: Advances, successes, and potential of their use. Ann. Rev. Entomol. 41, 375-406. https://doi.org/10.1146/annurev.en.41.010196.002111
  31. Stouthamer, R., Gai, Y., Koopmanschap, A.B., Platner, G.R., Pinto, J.D., 2000. ITS-2 sequence do not differ for the closely related species Trichogramma minutum and T. platneri. Entomol. Exp. Appl. 95, 105-111. https://doi.org/10.1046/j.1570-7458.2000.00647.x
  32. Stouthamer, R., Hu, J., van Kan, F.J.P.M., Platner, G.R., Pinto, J.D., 1999. The utility of internally transcribed spacer 2 DNA sequences of the nuclear ribosomal gene for distinguishing sibling species of Trichogramma. BioControl 43, 421-440. https://doi.org/10.1023/A:1009937108715
  33. Stouthamer, R., Luck, R.F., Hamilton, W.D., 1990. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc. Natl. Acad. Sci. USA 87, 2424-2427. https://doi.org/10.1073/pnas.87.7.2424
  34. Sumer, F., Tuncbilek, A.S., Oztemiz, S., Pintureau, B., Rugman-Jones, P., Stouthamer, R., 2009. A molecular key to the common species of Trichogramma of the Mediterranean region. BioControl 54, 617-624. https://doi.org/10.1007/s10526-009-9219-8
  35. Sumer, F., Oztemiz, S., Tuncbilek, A.S., Stouthamer, R., 2011. Sequence analysis of the ribosomal DNA ITS2 region in two Trichogramma species (Hymenoptera: Trichogrammatidae). Arch. Biol. Sci. Belgrade 63, 949-954. https://doi.org/10.2298/ABS1104949E
  36. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  37. The entomological society of Korea and Korean society of applied entomology, 1994. Check list of insects from Korea, Kon-kuk university press, Seoul.
  38. Wang, Z., He, K., Yan, S., 2005. Large-scale augmentative biological control of Asian corn borer using Trichogramma in China: A success story, in: Hoddle, M.S. (Ed.), Proceedings of Second International Symposium on Biological Control of Arthropods Volume II. Davos, Switzerland, pp. 487-494. (USDA Forest Servis Publication FHTET-2005-08)
  39. White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics, in: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR protocols, a guide to methods and applications. Academic Press, San Diego, California, pp. 315-322.

Cited by

  1. The Temperature-Dependent Development of the Parasitoid Fly, Exorista Japonica (Townsend) (Diptera: Tachinidae) 2016, https://doi.org/10.5656/KSAE.2016.09.0.054