DOI QR코드

DOI QR Code

The Study of Environmental Risk Assessment for Fluorescent Genetically Modified Silkworms

형광단백질 발현 유전자변형 누에(Bombyx mori )의 환경위해성 평가연구

  • Kim, Hyunjung (Department of Biology, Graduate School of Seoul Women's University) ;
  • Jung, Chuleui (Department of Bioresource Sciences, Graduate school, Andong National University) ;
  • Goo, Taewon (National Academy of Agricultural Science, RDA) ;
  • Yi, Hoonbok (Department of Biology, Graduate School of Seoul Women's University)
  • 김현정 (서울여자대학교 대학원 생물학과) ;
  • 정철의 (안동대학교 대학원, 생명자원과학과) ;
  • 구태원 (농촌진흥청 국립농업과학원) ;
  • 이훈복 (서울여자대학교 대학원 생물학과)
  • Received : 2014.03.19
  • Accepted : 2014.05.15
  • Published : 2014.09.01

Abstract

It is true that the proper environmental risk assessments for many GM (Genetically Modified) insects almost have not been executed in Korea. Therefore, we tested the environmental risk assessment about GM silkworms if there is any difference between GM silkworms and non-GM silkworms by the following three measurements. First, we measured their mobility in the breeding environment conditions with food and without food. Secondly, we measured their viability at the artificial extreme environmental conditions (low and high temperature and humidity, absent/present of foods,) after escaping from their breeding environments. Thirdly, we observed the number of laying eggs and their hatchability between GM silkworms and non-GM silkworms with four different pair experiments. The mobility of GM silkworms and non-GM silkworms statistically did not differ, and the egg productivity and hatchability were not also different. The hatchability by couple of GM female silkworms and non-GM male silkworms was lower than by non-GM male and female couple between the GM silkworms and non-GM silkworms, and there was statistically different. Relatively, the viability of GM silkworms was lower than non-GM silkworms. We could not exactly test for viability of silkworms in low temperature conditions because of their hibernating. Although there was any difference in viability and hatchability between GM silkworms and non-GM silkworms, all ability of GM silkworms was lower than non-GM silkworms. Conclusively, the environmental risk of GM silkworm was relatively lower than non-GM silkworm in this study.

곤충(초파리, 모기, 누에)은 해충방제, 유용물질생산, 의학연구 등을 위해 유전자변형 곤충으로 개발되어 왔지만, 아직까지 국내에서 유전자변형 곤충에 대한 환경위해성 평가 등이 거의 실시 되지 못하고 있다. 따라서, 본 연구에서 유전자변형 누에의 환경위해성 평가를 3가지 항목(이동성, 생존능력, 산란 및 부화율)으로 진행하였다. 첫째, 기본 사육 절차에서의 탈출가능성(이동성), 둘째, 사육환경으로부터 탈출시 생존 가능성(8개의 극한 환경조건; 고온, 저온, 건조, 습함, 먹이의 유무), 셋째, 비유전자변형 누에♀ ${\times}$ 비유전자변형 누에♂, 비유전자변형 누에♀ ${\times}$ 유전자변형 누에♂, 유전자변형 누에♀ ${\times}$ 비유전자변형 누에♂, 유전자변형 누에♀ ${\times}$ 유전자변형 누에♂으로부터 나온 산란 및 부화율을 비교 하였다. 유전자변형 누에와 비유전자변형 누에의 이동성은 통계적으로 차이가 없었으며, 산란 및 부화율 또한 통계적 차이가 없었다. 다만, 비유전자 변형 암수쌍에서 산란된 알의 부화율보다 유전자변형 누에♀와 비유전자변형 누에♂에서 산란된 알의 부화율이 통계적으로 낮은 결과를 보였다. 극한환경에서의 생존율 실험에서 상대적으로 유전자변형 누에가 비유전자변형 누에보다 생존율이 낮았으며, 특히 고온조건의 환경에서 통계적으로 생존율이 낮은 결과를 보였다. 저온 조건의 경우 누에 유충의 동면으로 인해 실험결과를 명확하게 얻을 수 없었다. 유전자변형 누에와 비 유전자변형 누에가 일부의 차이를 보였으나 모든 실험에서 유전자변형 누에의 값이 비유전자변형 누에보다 낮게 나타났으며, 결과적으로 이번 연구에서는 유전자변형 누에의 위해성은 비유전자변형 누에보다 적었다.

Keywords

References

  1. Benedict, J.H., 2003. Strategies for controlling insect, mite and nematodes pests. In: Plants, Genes, and Crop Biotechnology. M.J. Chrispeels and D.E. Sadava (eds.). Jones and Bartlett Publishers, Sudbury (MA), USA. pp. 414-442.
  2. Deguine, J.P., Ferron, P., Russell, D., 2008. Sustainable pest management for cotton: A review. Agronomy for Sustainable Development. 28, 113-137. https://doi.org/10.1051/agro:2007042
  3. Facchinelli, L., Valerio, L., Ramsey, J.M., Gould, F., Walsh, R.K., Bond, G., Robert, M.A., Lloyd, A.L., James, A.A., Alphey, L., Scott, T.W., 2013. Field cage studies and progressive evaluation of genetically-engineered mosquitoes PLOS Neglected Tropical Diseases. 7, e2001. https://doi.org/10.1371/journal.pntd.0002001
  4. Feany, M.B., Bender, W.W., 2000. A Drosophila model of Parkinson's disease. Nature 404, 394-398. https://doi.org/10.1038/35006074
  5. Goo, T.W., Yun, E.Y., Hwang, J.S., Kang, S.W., Kwon, O., 2001. Molecular characterization of a Bombyx mori protein disulfide isomerase (bPDI). Korean journal of Life Science. 11, 415-422.
  6. Kim, S.W., Yun, E.Y., Choi, K.H., Kim, S.R., Park, S.W., Kang, S.W., Kwon, O., Goo, T.W., 2012. Construction of fluorescent red silk using fibroin H-chain expression system. Journal of Sericultural and Entomological Science. 50, 87-92. https://doi.org/10.7852/jses.2012.50.2.87
  7. Kongsin, S., Jiamton, S., Suaya, J.A., Vasanawathana, S., Sirisuvan, P., Shepard, D., 2010. The cost of dengue in Thailand. Dengue Bulletin. 34, 77-88.
  8. Kumar, N.S., Basavaraja, H.K., Kumar, C.M.K., Reddy, N.M., Datta, R.K., 2002. On the breeding of "CSR18 x CSR19"- A robust bivoltine hybrid of silkworm, Bombyx mori L. for the tropics. International Journal of Industrial Entomology. 5, 155-162.
  9. Lee, H.L., Vasan, S., Birgelen, L., Murtola, T., Gong, H., Field, R., Mavalankar, D., Nazni, W.A., Lokman, S.H., Shahnaz, M., Ng, C.W., Lucy, L.C.S., Suaya, J.A., Shepard, D.S., 2010. Immediate cost of dengue to Malaysia and Thailand: An estimate. Dengue Bulletin. 34, 65-76.
  10. Lee, K.S., Kim, B.Y., Je, Y.H., Woo, S.D., Sohn, H.D., Jin, B.R., 2007. A new technique for producing recombinant baculovirus directly in silkworm larvae. Biotechnology Letter. 29, 175-180.
  11. Lehane, M.J., Serap, A., 2012. Control Using Genetically Modified Insects Poses Problems for Regulators. PLoS Neglected Tropical Diseases. 6, e1495. https://doi.org/10.1371/journal.pntd.0001495
  12. Muir, W.M., Howard, R.D., 1999. Possible ecological risks of transgenic organism release when transgenes affect mating success: Sexual selection and the Trojan gene hypothesis. PNAS. 96, no. 24.
  13. Muir, W.M., Howard, R.D., 2001. Fitness Components and Ecological Risk of Transgenic Release: A Model Using Japanese Medaka (Oryzias latipes). The American Naturalist. 158, 1-16. https://doi.org/10.1086/320860
  14. Muir, W.M., Howard, R.D., 2004. Characterization of environmental risk of genetically engineered (GE) organisms and their potential to control exotic invasive species. Aquatic Sciences. 66, 414-420. https://doi.org/10.1007/s00027-004-0721-x
  15. Mumford, J.D., 2012. Science, Regulation, and Precedent for Genetically Modified Insects. PLoS Neglected Tropical Diseases. 6, e1504. https://doi.org/10.1371/journal.pntd.0001504
  16. Muqit, M.M., Feany, M.B., 2002. Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nature Reviews Neuroscience. 3, 237-243.
  17. Murray, J.D., Maga, E.A., 2010. Is there a risk from not using GE animals? Transgenic Research. 19, 357-361. https://doi.org/10.1007/s11248-009-9341-5
  18. Murtola, T., Vasan, S., Puwar, P., Govil, D., Field, R., Gong, H., Bhavsar-Vyas, A., Suaya, J., Howard, M., Shepard, S.D., Kohli, V., Prajapati, P., Singh, A., Mavalankar, D., 2010. Preliminary estimate of immediate cost of chikungunya and dengue to Gujarat, India. Dengue Bulletin. 34, 32-40.
  19. Parks, A.L., Cook, K.R., Belvin, M., Dompe, N.A., Fawcett, R., Huppert, K., Tan, L.R., Winter, C.G., Bogart, K.P. Deal, J.E., Deal-Herr, M.E., Grant, D., Marcinko, M., Miyazaki, W.Y., Robertson, S., Shaw, K.J., Tabios, M., Vysotskaia, V., Zhao, L., Andrade, R.S., Edgar, K.A., Howie, E., Killpack, K., Milash, B., Norton, A., Thao, D., Whittaker, K., Winner, M.A., Friedman, L., Margolis, J., Singer, M.A., Kopczynski, C., Curtis, D., Kaufman, T.C., Plowman, G.D., Duyk, G., Francis-Lang, H.L., 2004. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature Genetics. 36, 288-292. https://doi.org/10.1038/ng1312
  20. Perez-Guerra, C.L., Halasa, Y., Rivera, R., Pena, P., Ramirez, V., Cano, M., Shepard, D.S., 2010. Economic cost of dengue public prevention activities in Puerto Rico. Dengue Bulletin. 34, 13-24.
  21. Ramesha, C., Seshagiri, S.V., Rao, C.G.P., 2009. Evaluation and identification of superior polyvoltine crossbreeds of mulberry silkworm, Bombyx mori L. Journal of Entomology . 6, 188-197. https://doi.org/10.3923/je.2009.188.197
  22. Reeves, R.G., Denton, J.A., Santucci, F., Bryk, J., Reed, F.A., 2012. Scientific Standards and the Regulation of Genetically Modified Insects PLoS Neglected Tropical Diseases. 6, e1502. https://doi.org/10.1371/journal.pntd.0001502
  23. Rulifson, E.J., Kim, S.K. Nusse, R., 2002. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes Science. 296, 1118-1120. https://doi.org/10.1126/science.1070058
  24. SAS/STAT(R) 9.3 User's Guide, 2011, SAS Institute Inc., Cary, NC, USA
  25. Thibault, S.T., Singer, M.A., Miyazaki, W.Y., Milash, B., Dompe, N.A., Singh, C.M., Buchholz, R., Demsky, M., Fawcett, R., Francis-Lang, H.L., Ryner, L., Cheung, L.M., Chong, A., Erickson, C., Fisher, W.W., Greer, K., Hartouni, S.R., Howie, E., Jakkula, L., Joo, D., Killpack, K., Laufer, A., Mazzotta, J., Smith, R.D., Stevens, L.M., Stuber, C., Tan, L.R., Ventura, R., Woo, A., Zakrajsek, I., Zhao, L., Chen, F., Swimmer, C., Kopczynski, C., Duyk, G., Winberg, M.L., Margolis, J., 2004. A complementary transposon tool kit for Drosophila melanogaster using P and piggybac. Nature Genetics. 36, 283-287. https://doi.org/10.1038/ng1314
  26. Korea Meteorological Administration(KMA). www.kma.go.kr
  27. Korea Research Institute of Bioscience and Biotechnology (Korea Biosafety Cleaning House). 2013. Research on Development of Safety Management Standards for Genetically Modified Animals/Insects; Focus on Silkworm and Pigs. Rural Development Administration.