Effect of Simple Formulas of Muscle Section in Donguibogam on Myogenic Regulatory Factors and IGF-1 Expression in C2C12 Cells

  • Yang, In Jun (Department of Physiology, College of Korean Medicine, Dongguk University) ;
  • Tettey, Clement (Department of Physiology, College of Korean Medicine, Dongguk University) ;
  • Shin, Heung Mook (Department of Physiology, College of Korean Medicine, Dongguk University)
  • Received : 2014.06.19
  • Accepted : 2014.08.12
  • Published : 2014.08.25

Abstract

Simple formulas (單方) of muscle section in Donguibogam (東醫寶鑑) have long been prescribed for strengthening muscle and/or prevention of age-related muscle loss. However, biological activity and mechanisms by which they influence myoblast differentiation have not been studied. Therefore, in this study, we evaluated the effects of 14 simple formulas on myoblast differentiation in C2C12 myoblast cells under non-cytotoxic ($0.5mg/m{\ell}$) conditions. C2C12 cells were treated with water extracts of simple formulas for 72 h, and RT-PCR was performed to determine the gene expression levels of myogenic regulatory factors (MRFs), including myoD, myogenin, MRF4, myf5, and insulin like growth factor-1 (IGF-1). Treatment with Colocasiae Rhizoma (CR), Pini Semen (PS), and Sesami Semen (SS) resulted in a significant increase in expression of myogenin in C2C12 cells. Treatment with Allii Macrostemi Bulbus (AM), Colocasiae Rhizoma (CR), and Pini Semen (PS) also resulted in increased expression of MRF4 in C2C12 cells. In addition, enhanced expression of IGF-1 was observed in treatment with Eucommiae cortex (EC), Dioscoreae Rhizoma (DR), Colocasiae Rhizoma (CR), Pini Semen (PS), and Sesami Semen (SS) in C2C12 cells. These results indicate that simple formulas of muscle section in Donguibogam could potentially enhance myoblast differentiation at least in part via increasing expression of myogenin, and/or MRF4 and/or IGF-1.

Keywords

References

  1. Buford, T.W., Anton, S.D., Judge, A.R., Marzetti, E., Wohlgemuth, S.E., Carter, C.S., Leeuwenburgh, C., Pahor, M., Manini, T.M. Models of Accelerated Sarcopenia: Critical Pieces for Solving the Puzzle of Age-Related Muscle Atrophy. Ageing Res Rev 9(4):369-383, 2010. https://doi.org/10.1016/j.arr.2010.04.004
  2. Wang, C,, Bai, L. Sarcopenia in the elderly: basic and clinical issues. Geriatr Gerontol Int 12(3):388-396, 2012. https://doi.org/10.1111/j.1447-0594.2012.00851.x
  3. Trendelenburg, A.U., Meyer, A., Jacobi, C., Feige, J.N., Glass, D.J. TAK-1/p38/nNF${\kappa}B$ signaling inhibits myoblast differentiation by increasing levels of Activin A. Skelet Muscle 2(1):3, 2012. https://doi.org/10.1186/2044-5040-2-3
  4. Langen, R.C., Schols, A.M., Kelders, M.C., Wouters, E.F., Janssen-Heininger, Y.M. Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. FASEB J 15(7):1169-1180, 2001. https://doi.org/10.1096/fj.00-0463
  5. Bigot, A., Jacquemin, V., Debacq-Chainiaux, F., Butler-Browne, G.S., Toussaint, O., Furling. D., Mouly. V. Replicative aging down-regulates the myogenic regulatory factors in human myoblasts. Biol Cell 100(3):189-99, 2008. https://doi.org/10.1042/BC20070085
  6. Morgan, J.E., Partridge, T.A. Muscle satellite cells. Int J Biochem Cell Biol 35(8):1151-1156, 2003. https://doi.org/10.1016/S1357-2725(03)00042-6
  7. Davies, K.E., Nowak, K.J. Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 7(10):762-773, 2006. https://doi.org/10.1038/nrm2024
  8. Naidu, P.S., Ludolph, D.C., To, R.Q., Hinterberger, T.J., Konieczny, S.F. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Mol Cell Biol 5(5):2707-2718, 1995.
  9. Chen, S.S., Hung, H.T., Chen, T.J., Hung. H.S., Wang, D.C. Di-(2-ethylhexyl)-phthalate reduces MyoD and myogenin expression and inhibits myogenic differentiation in C2C12 cells. J Toxicol Sci 38(5):783-791, 2013. https://doi.org/10.2131/jts.38.783
  10. Senesi, P., Luzi, L., Montesano, A., Mazzocchi, N., Terruzzi, I. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation. J Transl Med 11(1):174, 2013. https://doi.org/10.1186/1479-5876-11-174
  11. Montesano, A., Luzi, L., Senesi, P., Mazzocchi, N., Terruzzi, I. Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. J Transl Med 11: 310, 2013. https://doi.org/10.1186/1479-5876-11-310
  12. De, Arcangelis, V., Coletti, D., Conti, M., Lagarde, M., Molinaro, M., Adamo, S., Nemoz, G., Naro, F. IGF-I-induced differentiation of L6 myogenic cells requires the activity of cAMP-phosphodiesterase. Mol Biol Cell 14(4):1392-1404, 2003. https://doi.org/10.1091/mbc.E02-03-0156
  13. Fuentes, E.N., Bjornsson, B.T., Valdes, J.A., Einarsdottir, I.E., Lorca, B., Alvarez, M., Molina, A. IGF-I/PI3K/Akt and IGF-I/MAPK/ERK pathways in vivo in skeletal muscle are regulated by nutrition and contribute to somatic growth in the fine flounder. Am J Physiol Regul Integr Comp Physiol 300(6):R1532-1542, 2011. https://doi.org/10.1152/ajpregu.00535.2010
  14. Song, Y.H., Song, J.L., Delafontaine, P., Godard, M.P. The therapeutic potential of IGF-I in skeletal muscle repair. Trends Endocrinol Metab 24(6):310-319, 2013. https://doi.org/10.1016/j.tem.2013.03.004
  15. Vatansever, F., Rodrigues, N.C., Assis, L.L., Peviani, S.S., Durigan, J.L., Moreira, F.M., Hamblin, M.R., Parizotto, N.A. Low intensity laser therapy accelerates muscle regeneration in aged rats. Photonics Lasers Med 1(4):287-297, 2012.
  16. Firenzuoli, F., Gori, L. Herbal medicine today: clinical and research issues. Evid Based Complement Alternat Med 4(Suppl 1):37-40, 2007.
  17. Moss, A.S., Monti, D.A., Amsterdam, J.D., Newberg, A.B. Complementary and alternative medicine therapies in mood disorders. Expert Rev Neurother 11(7):1049-1056, 2011. https://doi.org/10.1586/ern.11.77
  18. 지명순, 윤창렬. "동의보감 단방처방 중 식재료활용에 관한 연구. 대한한의학원전학회지 23(1)279-302, 2010.
  19. 오세창, 김광중. 동의보감에서 단방 민간요법이 주는 의미. 동의생리병리학회지 20(1):1-9, 2006.
  20. 오재근. 약 하나로 병 하나 고치기: 동의보감 단방의 편찬과 계승. 의사학 22(1):1-40, 2013.
  21. 許浚著, 東醫文獻硏究室再編, 동의보감, 서울, 法仁文化社, pp 556, 566-567, 2005.
  22. Dedieu, S., Mazères, G., Cottin, P., Brustis, J.J. Involvement of myogenic regulator factors during fusion in the cell line C2C12. Int J Dev Biol 46(2):235-241, 2002.
  23. Francetic, T., Li, Q. Skeletal myogenesis and Myf5 activation. Transcription 2(3):109-114, 2011. https://doi.org/10.4161/trns.2.3.15829
  24. Sharples, A.P., Al-Shanti, N., Stewart, C.E. C2 and C2C12 murine skeletal myoblast models of atrophic and hypertrophic potential: relevance to disease and ageing? J Cell Physiol 225(1):240-250, 2010. https://doi.org/10.1002/jcp.22252
  25. Louis, M., Van, Beneden, R., Dehoux, M., Thissen, J.P., Francaux, M. Creatine increases IGF-I and myogenic regulatory factor mRNA in C(2)C(12) cells. FEBS Lett 557(1-3):243-247, 2004. https://doi.org/10.1016/S0014-5793(03)01504-7
  26. Rawls, A., Morris, J.H., Rudnicki, M., Braun, T., Arnold, H.H., Klein, W.H., Olson, E.N.. Myogenin's functions do not overlap with those of MyoD or Myf-5 during mouse embryogenesis. Dev Biol 172(1):37-50, 1995. https://doi.org/10.1006/dbio.1995.0004