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Abstract 
 

In this paper, a generalized likelihood ratio test (GLRT) is proposed for cyclostationary 
multi-antenna spectrum sensing in cognitive radio systems, which takes into account the cyclic 
autocorrelations obtained from all the receiver antennas and the cyclic cross-correlations 
obtained from all pairs of receiver antennas. The proposed GLRT employs a different 
hypotheses problem formulation and a different asymptotic covariance estimation method, 
which are proved to be more suitable for multi-antenna systems than those employed by the 
Dandawaté-Giannakis algorithm. Moreover, we derive the asymptotic distributions of the 
proposed test statistics, and prove the constant false alarm rate property of the proposed 
algorithm. Extensive simulations are conducted, showing that the proposed GLRT can achieve 
better detection performance than the Dandawaté-Giannakis algorithm and its extension for 
multi-antenna cases. 
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1. Introduction 

Recently, cognitive radio (CR) has drawn significant attention from academic and industrial 
communities to meet the ever-growing needs for spectrum resources [1]- [4]. In CR systems, 
cognitive unlicensed users are allowed to identify and exploit the local and instantaneous 
spectrum white space where no licensed user is present. A CR user is required to perform 
spectrum sensing [5]- [8] periodically to avoid significant interference to the licensed systems. 
If an idle channel is detected, the CR user can transmit or receive data on the channel; whereas, 
if a licensed user is detected, the CR user avoids data transmission on the channel and tunes to 
another idle channel. Cyclostationarity-based signal detection is one of the widely considered 
spectrum sensing techniques for CR systems, due to its capability of differentiating noise from 
licensed user signals. The cyclostationary spectrum sensing methods exploit the cyclic 
statistics such as cyclic auto-correlation for the detection of licensed user, which are nonzero 
at particular cyclic frequencies for the licensed user signal [9], [10]. 

Many existing cyclostationarity-based spectrum sensing methods [11]- [21] have employed 
the Dandawaté-Giannakis algorithm [22] due to its constant false alarm rate (CFAR) property 
and robustness in the low signal-to-noise ratio (SNR) regime. The Dandawaté-Giannakis 
algorithm can be viewed as the generalized likelihood ratio test (GLRT) for the presence of 
cyclostationarity. It has assumed that the distributions of the cyclic auto-correlation 
estimations under the null hypothesis and the alternative hypothesis have the same asymptotic 
covariance and differ only in mean. Based on this, the asymptotic covariance estimation can be 
generalized regardless of the hypothesis, which leads to a final test statistic having a squared 
Mahalanobis distance form. 

The performance of spectrum sensing can be seriously degraded in Rayleigh fading 
situations. To remedy this problem, multi-antenna spectrum sensing that exploits spatial 
diversity could be employed. Recently, how to improve the performance of cyclostationary 
spectrum sensing by using multiple antennas has also been studied by researchers. In [20], we 
have extended the Dandawaté-Giannakis algorithm to allow multi-antenna spectrum sensing, 
which takes into account the cyclic auto-correlations obtained from all receiver antennas and 
the cyclic cross-correlations obtained from all pairs of receiver antennas. Maximum radio 
combining was proposed in [21], which requires the channel state information as a priori 
information. In [23], the spectral correlation function (SCF) is used to estimate the phase 
difference between the channel responses of different antennas, and the test statistic is formed 
by combining the SCFs of the received signals from all the antennas. Collaborative spectrum 
sensing [11] can be viewed as a special case of multi-antenna spectrum sensing, which drops 
the cyclic cross-correlations in detection. 

In this paper, we propose a novel GLRT for cyclostationary multi-antenna spectrum sensing. 
The framework of the proposed algorithm is similar to that in [20], i.e., taking into account all 
the achievable cyclic auto-correlations and cyclic cross-correlations. However, it is different 
with [20] in hypotheses problem formulation and asymptotic covariance estimation. More 
specifically, the the asymptotic covariances among the cyclic cross-correlations and 
auto-correlations under the null hypothesis are assumed to different from those under the 
alternative hypothesis, while they are assumed to be the same in the Dandawaté-Giannakis 
algorithm and its extension [20]. We use an example, where the additive noise is low-pass 
zero-mean Gaussian noise, to illustrate the validity and necessity of this difference and 
conduct the proposed GLRT. The distribution and the computational complexity of the 
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proposed test statistic are also derived. The proposed algorithm maintains the CFAR property 
and has better detection performance and much lower computational complexity than those of 
[20]. For example, a performance gain of 1.7dB is achieved for a four-antenna system. The 
necessity of taking into account the cyclic cross-correlations is also demonstrated via 
simulation experiments. 

The rest of this paper is organized as follows: In Section 2, the multi-antenna spectrum 
sensing model is presented. In Section 3, we propose the GLRT for cyclostationary 
multi-antenna spectrum sensing, and then demonstrate how to construct the proposed GLRT 
under the assumption that the additive noise is low-pass zero-mean Gaussian noise with 
uncertain power. An example is presented in Section 4 to further illustrate the proposed test. In 
section 5, asymptotic distribution and computational complexity of the proposed test statistic 
are given. Simulation results and discussions are presented in Section 6. Finally, conclusions 
are drawn in Section 7. 

2. System Model of Multi-Antenna Spectrum Sensing 

As shown in Fig. 1, we consider a CR receiver with ( 2)N N ≥  antennas. We assume an 
independent flat Rayleigh fading channel [24] for each pair of antennas between the 
transmitter and receiver in the following derivations. 
 

 

Fig. 1. Multi-antenna spectrum sensing model. 
 

At each sensing period, the CR tries to distinguish between the following two hypotheses: 
 

 0

1

( ) ( ), 1,2,...,
( ) ( ) ( ), 1,2,...,
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= + =
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,
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 (1) 

 

where ( )s t  is the signal transmitted by the licensed user; i denotes the index of antenna; ( )ix t  
and ( )i tw  denote the received signal and the low-pass zero-mean complex Gaussian noise at 
the i-th antenna, respectively; ih  denotes the channel response for the i-th antenna, which can 
be further expressed as 
 { }exp 2 ,i i ih jγ πθ= −  (2) 



 2766                        Guohui Zhong et al.: Generalized Likelihood Ratio Test For Cyclostationary Multi-Antenna Spectrum Sensing 

where iγ  is Rayleigh distributed with the probability density function (PDF) as 
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and iθ  denotes the phase offset of the channel response, which is uniformly distributed with 
the PDF as 

 
1 , 0 2 ,

( ) 2
0 , otherwise.

i
if

θ π
θ π

 ≤ <= 
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Throughout this paper, we assume that ih  is invariant over the sensing period, and both ( )i tw  
and ih  are independent for different antennas. 

3. Cyclostationarity-Based Multi-Antenna Spectrum Sensing 

3.1 Cyclostationarity 

A continuous-time random process ( )x t  is a wide sense second-order cyclostationary process, 
if its mean and auto-correlation are periodical with some periods [10]. Define the time varying 
auto-correlation of ( )x t  as *( , )= { ( ) ( )}xxR t E x t x tτ τ

∆

+ , where τ  denotes the lag. Then, due to 

its periodicity, ( , )xxR t τ  can be represented as a Fourier series as 
 

 
2( , ) ( ) j t

xx xxR t R eα πα

α

τ τ=∑  (5) 
 

where τ  is called the cyclic frequency and the Fourier coefficients are called the cyclic 
auto-correlation functions, which are given by 
 

 22

2

1( ) lim ( , ) .
T

j t
Txx xxT

R R t e dt
T

α πατ τ −

→∞ −
= ∫  (6) 

 

Another useful function that can characterize the second-order cyclostationary process ( )x t  
is called the conjugated cyclic auto-correlation (CCA) function, which is given by 
 

 * *
22

2

1( ) lim ( , )
T

j t
Txx xxT

R R t e dt
T

α πατ τ −

→∞ −
= ∫ ,  (7) 

where * ( , )= { ( ) ( )}
xx

R t E x t x tτ τ
∆

+ . In the rest of this paper, we focus on the case using the CCA 

functions, while the one concerning cyclic auto-correlation functions can be derived similarly. 
The discrete time version of the CCA estimation, *

ˆ ( )
xx

Rα ν , can be calculated as 
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where M is the number of available signal samples, ν  is the discrete version of the lag 
parameter, and m is the discrete time index, i.e., [ ] ( )sx m x mT= , where sT  denotes the 
sampling period. 

As for the multi-antenna spectrum sensing problem where there are N antennas at the CR 
receiver, N CCA functions and ( 1) / 2N N −  conjugated cyclic cross-correlation (CCC) 
functions can be obtained, which can be defined together as follows: 
 

 * *
22

2

1( )= lim ( , ) , ,
i j i j

T
j t

Tx x x xT
R R t e dt i j N

T
α πατ τ

∆
−

→∞ −
≤ ≤∫  (9) 

 

where * ( , )= ( ) ( )
i j

i jx x
R t E x t x tτ τ

∆
 +  . Note that when i j= , * ( )

i jx x
Rα τ  denotes the CCA 

functions, and when i j< , * ( )
i jx x

Rα τ  denotes the CCC functions. Also note that we only take 

into account *
ˆ

i jx x
R  and neglect *

ˆ
j ix x

R ( i j< ), since it is easy to verify that 
 

 * *
ˆ ˆlim ( ) lim ( ).
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Similar to (8), a discrete time version estimation of * ( )
i jx x

Rα τ  with M samples is given by 
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3.2 GLRT for the Multi-Antenna Cyclostationary Spectrum Sensing 

Taking into account all CCA and CCC estimations, we can define a vector mulr̂  as 
  

 * * * *
1 1 1 2 1 3 1

mulˆ ˆ ˆ ˆ ˆ= , , , , ,
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By using mulr̂ , the hypotheses problem for multi-antenna spectrum sensing is now 
formulated as follows: 
 

 
0 mul mul,0

1 mul mul mul,1
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ˆ: ,
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H
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ò
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where mulr  is the asymptotic value of mulr̂  under 1H , mul,0ò  is the estimation error vector 
resulted from ( )i tw  and mul,1ò  is the estimation error vector resulted from both ( )i tw  and ( )s t , 

which are asymptotically distributed as mul,0 mul,0lim ( , )
D

M
M

→∞
= 0 Σò N  and 

mul,1 mul,1lim ( , )0 Σ
D

M
M

→∞
=Nò , respectively. Different from the Dandawaté-Giannakis algorithm 

and its extension proposed in [20], we do not assume that the asymptotic covariance matrix 
under 0H  and 1H  is the same, i.e., we assume mul,0 mul,1=/Σ Σ  in our hypotheses problem. Our 
hypotheses problem is more realistic, due to the fact that both ( )s t and ( )i tw  contributes to the 
asymptotic covariance matrix under 1H , whereas only ( )i tw  contributes to 0H . We will use 
an example, where the additive noise is the low-pass zero-mean complex Gaussian noise, to 
illustrate its validity and necessity in the next subsection. 

According to the binary hypotheses given in (14), the generalized likelihood ratio (GLR) for 
the test problem is given by 
 

 1

0
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θ
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By substituting mulr̂  for 1θ  and 0  for 0θ , we can obtain that 
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1/2

mul,0 1 T
mul mul,0 mul1/2

mul,1

det( ) 1 ˆ ˆexp .
det( ) 2

M − =  
 

Σ
r Σ r

Σ
 (15) 

 

Taking the logarithm transformation of the GLR gives the test statistic as follows: 
 

 
1/2

mul,01 T
mul mul mul,0 mul 1/2

mul,1

det( )
ˆ ˆ 2ln .

det( )
M −= +

Σ
r Σ r

Σ
T  (16) 

 

Since the second term of this test statistic is of the same value under 1H  and 0H , it has no 
contribution to the detection and can be eliminated, which yields the final test statistic as 
 

 1 T
mul mul mul,0 mulˆ ˆ .M −= r Σ rT  (17) 

 

Remark 1: The GLR test statistic only uses the asymptotic covariance matrix under 0H , 

mul,0Σ , and it is unrelated to the asymptotic covariance matrix under 1H , mul,1Σ . 
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Remark 2: The GLR test statistic suggests that knowledge or partial knowledge of the 
statistics and distributions of the additive noise can be exploited to improve the detection 
performance. In the next section, it is shown in an example that if the additive noise is 
low-pass zero-mean complex Gaussian, and its bandwidth and power spectral density is 
known, mul,0Σ can be calculated. 

Remark 3: If no assumption about the additive noise can be made in the detection, the 
estimated mulΣ̂  calculated from the most recent detection that was decided to be under 0H  can 
be employed as a good approximation of mul,0Σ  of the current detection. Since the noise 
statistic does not change rapidly in practical situations, mulΣ̂  calculated from the recent 
detection is a good approximation of current mul,0Σ . The test statistic of Dandawaté-Giannakis 
algorithm employs current mulΣ̂ , whereas our proposed method suggests using the mulΣ̂  
calculated from the most recent detection that was decided to be under 0H . 

4. An Example of mul,0Σ  Estimation and the Corresponding Test 

In this section, we demonstrate how to estimate mul,0Σ  and construct the GLRT, with the 
partial knowledge that the noise is a low-pass zero-mean complex Gaussian noise with 
uncertain power, which is a typical and practical scenario for wireless communication (it 
models the equivalent baseband signal of bandpass additive white Gaussian noise). Moreover, 
we demonstrate the necessity of assuming mul,0 mul,1≠Σ Σ  during the derivation of the 
covariance matrix estimation. 

With the assumption that ( )tw  is a low-pass zero-mean complex Gaussian noise, the power 
spectral density (PSD) of ( )tw  is given by 

 * 2 0
1,  if | | ,

( )= { ( ) ( )} 2
0, else

j f N f B
f E t t e dπ ττ τ

∆ ∞ −

−∞

 ≤Φ + = 


∫ww w w  (18)  

where B  is the bandwidth of the equivalent band-pass signal of ( )tw and 0N  is assumed to be 
unknown due to noise power uncertainty. The auto-correlation function and the conjugated 
auto-correlation function of ( )tw  are defined as 

 *
0

sin( )( )= { ( ) ( )} 2 ,BR E t t N π ττ τ
πτ

∆

+ =ww w w  (19) 

and 

 * ( )= { ( ) ( )} 0,R E t tτ τ
∆

+ =
ww

w w  (20) 

respectively, whose discrete time versions are given by 

 *
0

sin( )( )= { [ ] [ ]} 2 ,s

s

B TR E m m N
T

π ν
ν ν

πν

∆

+ =ww w w  (21) 

and 

 * ( )= { [ ] [ ]} 0,R E m mν ν
∆

+ =
ww

w w  (22) 
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where sT  denotes the sampling period, ν  is the discrete time version of lag, and [ ]mw  is the 
discrete time version of ( )tw , i.e., [ ] ( )sm mT=w w . 

Theorem 1: Suppose the PSD of ( )i tw  is 

 

1, (| | )
2Φ ( )
10, (| | ).
2

i i

iN f B
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f B

 ≤= 
 >


ww

，

 

 

Then, when i j< , the asymptotic covariance of *
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Proof: Following the procedure presented in the proof of Theorem 1 of [22], and  
applying the PSD of ( )i tw , (23) and (24) are proved.  

Theorem 2:  When i j= , the asymptotic covariance of *
ˆ ( )

i j
Rα ν

ww  is given by 
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 2 .sj kTe πα−×    (26) 
 

Proof: Similar to that of Theorem 1. 
It can be seen from (23) to (26) that only iN  needs to be estimated to calculate the 

asymptotic covariance of *
ˆ ( )

ii
Rα ν

ww  and *
ˆ ( )

ji
Rα ν

ww , since the cyclic frequency of interest and the 

lag parameters are given in prior, and the bandwidth B  and the sampling period sT  are 
available as for a specific CR receiver. Under 0H , when ( ) ( )i ix t t=w , iN  can be consistently 
estimated by 

 

1
*
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ˆ .
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==
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Under 1H , using (27) to estimate iN  tends to yield a larger result. However, in the regime of 
low SNR, which is the critical situation in spectrum sensing, the error introduced is not 
significant. Since this approximation error only happens under 1H , it has no impact on the 
CFAR property of the proposed algorithm. 

By substituting (27) into (24) and (26), the asymptotic covariance of *
ˆ ( )

ii
Rα ν

ww  and *
ˆ ( )

ji
Rα ν

ww  
can be estimated. Actually, this covariance estimation method can be viewed as a special case 
of that in the Dandawaté-Giannakis algorithm [22]. No matter it is under 0H  or 1H , iN  is 
estimated as the energy of ( )ix t . This approximation is essentially equivalent to the 
assumption in the Dandawaté-Giannakis algorithm that the cyclic correlation estimation has 
the same asymptotic covariance under 0H  and 1H . It cannot be avoided, since under 1H  it is 
impossible to consistently estimate iN . 

Theorem 3: The asymptotic covariance between *
ˆ ( )

ji
Rα ν

ww  and *
ˆ ( )

a b
Rα ρ

w w  ( ( , ) ( , )i j a b≠ ) is 
given by 
 

 { }* *
ˆ ˆlim cum ( ), ( ) 0,

a bjiM
M R Rα αν ρ

→∞
=

ww ww  (28) 

 

 { }{ }* *

*ˆ ˆlim cum ( ), ( ) 0.
i a bjM

M R Rα αν ρ
→∞

=
w w ww  (29) 

 

Proof: Similar to that of Theorem 1, omitted due to space limit. 

Theorem 3 indicates that under 0H  the asymptotic covariance between *
ˆ ( )

ji
Rα ν

ww  and 

*
ˆ ( )

a b
R vα

w w  ( ( , ) ( , )i j a b≠ ) can be simply and correctly estimated as zero under the low-pass 

zero-mean complex Gaussian noise. Apparently, the asymptotic covariance between *
ˆ ( )

i jx x
Rα ν  

and *
ˆ ( )

a bx x
Rα ν  ( ( , ) ( , )i j a b≠ ) can not be guaranteed to be equal to zero under 1H . Therefore, it 

is necessary to assume that the asymptotic covariance is different under 0H  and 1H . 

As for the estimation of mul,0Σ , which contains all the asymptotic covariance among the 
CCA and CCC estimations, the covariance matrix estimator [20] with the Dandawaté- 
Giannakis algorithm is not valid, since under 1H  it fails to give good approximations for the 

entries of mul,0Σ  corresponding to the asymptotic covariance between *
ˆ ( )

ji
Rα ν

ww  and *
ˆ ( )

a b
R vα

w w   

( ( , ) ( , )i j a b≠ ). This also demonstrate the necessity to formulate the hypotheses of 
cyclostationary multi-antenna spectrum sensing as in (14). 

Denote mul,0Σ̂  as the estimation of the asymptotic covariance matrix mul,0Σ , which is of size 
2 2(( ) ) (( ) )N N P N N P+ × + , and can be divided into 2 2(( ) / 2) (( ) / 2)N N N N+ × +  blocks as 

follows, one block for each pair of ( )( , ),( , )i j a b , where i j N≤ ≤  and a b N≤ ≤ : 
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* * * * * * * * * *
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where * *, ,0i j a bx x x x
Σ  is the asymptotic covariance matrix between *ˆ

i jx x
r  and *ˆ

a bx x
r  under 0H , which 

can be calculated as 

 * *
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Re Im
2 2

,
Im Re

2 2

i j a b
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x x x x
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Q Q

Σ
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where ,ij abQ  is a P P×  matrix with the ( , )p q -th entry defined as follows: 
 

 { }{ }*

*

,
ˆ ˆ( , )= lim cum ( ), ( ) .

a b
ij ab p qM

p q M R Rα αν ν
∆

→∞
Q *

i jw w w w  (32) 

 

According to Theorem 3, * *, ,0i j a bx x x x
Σ  with ( , ) ( , )i j a b≠  is a 2 2P P×  zero matrix, thus, we 

can rewrite mul,0Σ  as 

 { * * * * * *
1 1 1 1 1 2 1 2 1 1

mul,0 , ,0 , ,0 , ,0
diag , , , ,

N Nx x x x x x x x x x x x
= …Σ Σ Σ Σ  
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 }* *, ,0

.
N N N Nx x x x

Σ  (33) 
 

Combining (24), (26) and the equations from (31) to (33), the estimator of mul,0Σ , mul,0Σ̂ , can 
be calculated. 

In summary, the proposed algorithm for cyclostationary multi-antenna spectrum sensing, 
under low-pass zero-mean complex Gaussian noise with uncertain power, can be implemented 
using the following steps: 

Step 1 Declare a cyclic frequency α  and a set of lags. 
Step 2 Compute the CCA and CCC estimations as in (11) and construct mulr̂  as in (12). 

Step 3 Calculate mul,0Σ̂ , by using (24), (26), and (31) to (33). 

Step 4 Substitute mul,0Σ̂ , for mul,0Σ  in (17) and calculate the test statistic as 
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 1 T
mul,Prop mul mul,0 mul

ˆˆ ˆ .M −= r rΣT  (34) 
 

Step 5 Let Γ  denote the threshold that satisfies the required detection performance. If 
mul,Prop > ΓT , accept 1H ; if mul,Prop ≤ ΓT , accept 0H . 

5. Asymptotic Distribution and Computational Complexity of the 
Proposed Test Statistic 

5.1 Asymptotic Distribution of mul,PropT  

To derive the asymptotic distribution of mul,PropT , we follow [11] and borrow the following 
theorem from [25]: 

Theorem 4: Let ~ ( , )x μ VN , where V is L L×  nonsingular, suppose that the real L L×  
matrix A  is symmetric, and let ( )r A  denote its rank. Then the quadratic form TxAx  follows 
a chi-square distribution if and only if AV  is idempotent, in which case TxAx  has ( )r A  
degrees of freedom and noncentrality parameter TμAμ . 

As for the proposed test statistic under 0H , let mulˆM=x r , =µ 0 , mul,0=V Σ  and 
1

mul,0
ˆ −=A Σ . Since ˆ

iN  is a mean-square sense consistent estimation of iN  under 0H  and 1
mul,0

ˆ −Σ  

is only determined by ˆ
iN , 1

mul,0
ˆ −Σ  is also mean-square sense consistent under 0H . Thus, 

1 1
mul,0 ,0 mul,0 ,0

ˆ ˆlim
P

M mul mul
− −

→∞ = =Σ Σ Σ Σ I , i.e., the matrix product, AV , is asymptotically 

idempotent. The convergence in probability ( P
= above) follows from application of a 

Cramer-Wold device [26] and from the fact that convergence in the mean-square implies 
convergence in probability. Hence, from Theorem 4, it follows that under 0H  

 

 
mul

2
mul,Prop 2lim ,

D

PNM
χ

→∞
=T   (35) 

 

where 2( ) / 2mulN N N= + . Clearly, this distribution is not related to the noise power, so 
uncertainty of the noise power has no impact on the CFAR property of the proposed algorithm. 
Deriving the distribution of the proposed test statistic under 1H  needs to introduce the 
following definition (See p. 67-88 of [27]): 

Definition 1: If x  has a multivariate normal distribution, ( , )μ VN , then the value of the 
following form T T( ) ( ) +x + a A x + a b x , where A  is a square matrix, has a generalized 
chi-square distribution. 

As for the proposed test statistic under 1H , let = =a b 0 , mulˆM=x r  and 1
mul,0

ˆ −=A Σ . Under 

1H , 
mul 1 mul,1ˆlim ( , )

D

M M→∞ =r θ ΣN , thus, the test statistic 1 T
mul,Prop mul mul,0 mul

ˆˆ ˆM −= r rΣT  is 
asymptotically generalized chi-square distributed.  
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5.2 Computational Complexity 
Denote the test static of the extended Dandawaté-Giannakis algorithm proposed in [20] as 

mul,DanT . The computational complexity of  mul,DanT  focuses on the calculation of the estimated 
asymptotic covariance mulΣ̂ , which is given as follows when only multiplication is 
considered: 

 
2

FFT FFT
mul,Dan mul FFT 2 FFT 2log log .

2 2 2
M MNN PM PM

  Ω = =   
   

O O  (36) 

where FFTM  is the length of the Fast-Fourier transform (FFT), which is employed for the 
calculation of mulΣ̂  (Refer to [20] and [22] for details). Note that FFTM  must not be less than 
the sample size, i.e., FFTM M≥ . 

As for the proposed test statistic given in (34), the computational complexity is 

 ( )
2

mul mul ,
2

NN PM PM
 

Ω = =  
 

O O  (37) 

Apparently, the calculation of mul,PropT  has a lower complexity compared with mul,DanT . 

6. Simulation Results 
The licensed communication system considered in the following simulations is a simplified 
GSM system with GMSK modulated signal of symbol rate GSM GSM1 270.833kbit/sf T= = . 
The baseband GMSK modulated signal is given by 

 GSM( ) exp 2 ( ) ,
t

m k
k

s t j h I g kT dπ τ τ
∞

−∞
=−∞

 
= − 

 
∑ ∫  (38) 

where kI  is the k th data symbol, and { }1,1kI ∈ − ; 0.5mh =  is the modulation index; ( )g t  is 
the impulse function given by 

 
GSM GSM

1( ) rect ( ),tg t p t
T T

∗= ( )  (39) 

where rect( )t  is the rectangular pulse function of unit length, and ( )p t  is a Gaussian impulse 
function with the time bandwidth product Gaussion GSM 0.3B T = . We assume that all the time slots 
of the simplified GSM system are occupied. It has been derived in [13] that a GMSK signal 
exhibits cyclostationarity at the cyclic frequency GSM 2fα =  and the lag 0τ = , which are 
employed in the following simulations as the cyclic frequency and lag of interest, respectively. 

We assume flat Rayleigh fading channels in the simulations of  Fig. 3 to Fig. 8, and the 
average SNR in dB of the received signal is defined by 

 

 
2

10
[| ( ) | ]SNR(dB) 10log ,

N

E hs t
P

=  (40) 

where NP  is the average power of the low-pass zero-mean complex Gaussian noise. The 
bandwidth of the equivalent band-pass Gaussian noise is 223.437kHzB = . The sampling rate 
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of the CR receiver is set to be 10 times the symbol rate of the GSM system, i.e., GSM10sf f=  
and GSM 10sT T= . 

For the estimation of the asymptotic covariance matrix with the Dandawaté-Giannakis 
algorithm, a length-2049 Kaiser window with β  parameter of 10 is used [11]. 

We mainly use the false alarm rate, fP , and the detection probability, dP , to measure the 
detector performance, which are defined respectively as 

 

 
0= Prob( ) | ,fP H

∆

> ΓT  (41) 

 
and 

 
1= Prob( ) | ,dP H

∆

> ΓT  (42) 

 
where T  is the test statistic. 
 

6.1 Distributions of the Proposed Test Statistics under 0H  

To verify the distributions of the proposed test statistics given in (35), we plot in Fig. 2 the 
simulated cumulative distribution functions (CDFs) of ,PropmulT  for different numbers of 
antennas under 0H . The theoretical CDFs of 2χ  distribution with corresponding degrees of 
freedom are also presented for comparison. The sample size is 4000M = . 

It is observed from Fig. 2 that the curves of the simulated CDFs and the theoretical CDFs 
nearly coincide, which confirms that the proposed test statistics given in (34) are 2χ  
distributed as (35) under 0H . Moreover, since these distributions are not related to the noise 
power, the CFAR property can be guaranteed for spectrum sensing based on the proposed test 
statistics. 

 

6.2 Multi-Antenna Cyclostationary Spectrum Sensing 
We investigate the detection performance of the proposed multi-antenna cyclostationary 
spectrum sensing with flat Rayleigh fading channel in this subsection. We first compare the 
proposed algorithm using the test statistic ,PropmulT  with the Dandawaté-Giannakis algorithm 
for single-antenna sensing, whose test statistic is denoted as DanT , and the one simply 
extending the Dandawaté-Giannakis algorithm for multi-antenna sensing, which was given in 
[20] and whose test statistic is denoted as ,DanmulT . Next, we show the necessity of taking into 
account the CCCs by comparing the proposed algorithm with the one excluding all the CCCs. 
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Fig. 2.  Distributions of the proposed test statistics under 0H . 

 

 

Fig. 3.  dP  vs. fP  with an average SNR of  -5dB and a sample size of 4000,  
under Rayleigh fading channel. 

 
Fig. 3 plots the curves of detection probability vs. false alarm rate for an average SNR of 

-5dB and different numbers of antennas, and Fig. 4 plots the curves of detection probability vs. 
average SNR with a false alarm rate of 0.01 and different numbers of antennas. The sample 
size of both figures is 4000. From Fig. 3 and Fig. 4, it observed that as the number of antennas 
increases, the detection performance increases significantly. These two figures also 
demonstrate that our proposed algorithm has better detection performance than the extended 
Dandawaté-Giannakis algorithm, i.e., the detection probability using ,PropmulT  is larger than the 
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one using ,DanmulT  under the same number of antennas. Most importantly, the performance gap 
becomes more significant as the number of antennas increases. For a four-antenna system, the 
performance gain is about 1.7dB, which is much more significant than that for a single- 
antenna system. The reason is that the proposed algorithm gives better estimation of the 
asymptotic covariance matrices of mulr̂  under 0H , i.e., mul,0Σ , than the Dandawaté-Giannakis 
algorithm does, and the improvement increases as the number of antennas and the dimension 
of the matrices increase, which are verified in Fig. 5. 

 

 

Fig. 4.  dP  vs. average SNR with a false alarm rate 0.01fP =  and a sample size of 4000, under 
Rayleigh fading channel. 

 
 

 

Fig. 5.  Normalized Estimation Error (normalized with antenna number N) vs. average SNR for the 
estimation of mul,0Σ , with a sample size of 4000, under Rayleigh fading channel. 

 



 2778                        Guohui Zhong et al.: Generalized Likelihood Ratio Test For Cyclostationary Multi-Antenna Spectrum Sensing 

To demonstrate the contribution of CCCs, we simulate the performance of the multi-antenna 
cyclostationary spectrum sensing algorithms excluding all CCCs, which uses mul,CCAr̂  as 
following instead of mulr̂  in the proposed algorithm: 

 

 * * *
1 1 2 2

mul,CCAˆ ˆ ˆ ˆ= , , , .
N Nx x x x x x

∆
 … r r r r  

 

Fig. 6 plots the curves of detection probability vs. false alarm rate for the proposed algorithm 
without the CCCs with an average SNR of -5dB and different numbers of antennas ( 2N =  
and 4N = ). It shows that the multi-antenna spectrum sensing algorithms that take into 
account all CCAs and CCCs outperform the ones excluding the CCCs, which reveals the 
contribution of CCCs. Fig. 7 plots the curves of detection probability vs. average SNR for the 
proposed algorithm without CCCs with a false alarm rate of 0.01 and different numbers of 
antennas ( 2N =  and 4N = ), and Fig. 8 shows a zoom of the important area illustrating the 
differences in performance more clearly. From Fig. 8, it is observed that the proposed 
algorithm obtains a performance gain of nearly 2.0dB over the one excluding the CCCs for 
four antennas. Moreover, it is observed that the performance gain provided by the CCCs is 
more significant for the proposed algorithm than that for the extended Dandawaté-Giannakis 
algorithm. As the number of antennas increases, the performance gain provided by CCCs also 
increases for the proposed algorithm, but stays unchanged for the extended Dandawaté- 
Giannakis algorithm. This demonstrates that the extended Dandawaté-Giannakis algorithm 
fails to take full advantages of the CCCs due to the false assumption that the asymptotic 
covariance matrix of mulr̂  is the same under 0H  and 1H  for spectrum sensing. 
 

 

Fig. 6.  dP  vs. fP   for the proposed multi-antenna cyclostationary spectrum sensing algorithms, with an 
average SNR of  -5dB and a sample size of 4000, under Rayleigh fading channel. 

7. Conclusion 
In this paper, we proposed a novel GLRT algorithm for cyclostationary multi-antenna 
spectrum sensing. Using an example where the additive noise is low-pass zero-mean Gaussian 
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noise, we verified that the proposed GLRT has a more reasonable hypotheses problem 
formulation and employs a more suitable asymptotic covariance estimator than those of the 
Dandawaté-Giannakis algorithm and its extension. We have also derived the asymptotic 
distributions of the proposed test statistics, and proved the CFAR property of the proposed 
algorithm. Theoretical analysis and simulation results showed that the proposed algorithm has 
better performance of detection probability and lower computational complexity compared 
with the Dandawaté-Giannakis algorithm and its extension. Moreover, simulation results also 
verified the necessity of taking into account the CCCs in multi-antenna cyclostationary 
spectrum sensing. 
 

 

Fig. 7.  dP  vs. average SNR for the proposed multi-antenna cyclostationary spectrum sensing 
algorithms, with a false alarm rate 0.01fP =  and a sample size of 4000, under Rayleigh fading channel. 

 
 

 

Fig. 8. Zoom of the important region of Fig. 7. dP  vs. average SNR for the proposed multi-antenna 
cyclostationary spectrum sensing algorithms, with a false alarm rate 0.01fP =  and a sample size of 

4000, under Rayleigh fading channel. 
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