DOI QR코드

DOI QR Code

Operating Status and Improvement Plans of Ten Wetlands Constructed in Dam Reservoirs in Korea

국내 10개 댐저수지 인공습지의 운영현황 및 개선방안

  • 최광순 (한국수자원공사 K-water연구원) ;
  • 김세원 (한국수자원공사 K-water연구원) ;
  • 김동섭 (한국수자원공사 K-water연구원) ;
  • 이요상 (한국수자원공사 K-water연구원)
  • Received : 2014.07.31
  • Accepted : 2014.08.18
  • Published : 2014.08.31

Abstract

To propose the improvement and management plans to strengthen the pollutant removal efficiency of dam reservoir's constructed wetlands(CWs), the operation status and configuration of CWs (including water depth, operational flow, water flow distribution, residence time, and pollutant removal efficiency, aspect ratio, open water/vegetation ratio etc.) were analyzed in 10 major wetlands constructed in dam reservoirs. The pollutant concentrations in the inflows of the studied CWs were lower than those of American and European constructed wetlands. Especially, organic matter concentrations in all of inflows were below 3 mg/L(as BOD) due to advanced treatment of sewage disposal plant and an intake of low concentration water during dry and normal seasons. The average removal efficiency of total nitrogen(TN) and total phosphorus(TP) for 10 CWs ranged from 7.6~67.6%(mean 24.9%) and -4.9~74.5%(mean 23.7%), respectively, showing high in wetlands treating municipal wastewater. On the other hand, the removal efficiency of BOD was generally low or negative with ranging from -133.3 to 41.7%. From the analysis of the operation status and configuration of CWs, it is suggested that the low removal efficiency of dam reservoir's CWs were caused by both structural (inappropriate aspect ratio, excessive open water area) and operational (neglecting water-level management, lack of facilities and operation for first flush treatment, lake of monitoring during rainy events) problems. Therefore, to enable to play a role as a reduction facility of non-point source(NPS) pollutants, an appropriate design and operation manuals for dam reservoir's CW is urgently needed. In addition, the monitoring during rainy events, when NPS runoff occur, must be included in operation manual of CW, and then the data obtained from the monitoring is considered in estimation of the pollutant removal efficiency by dam reservoir's CW.

국내 10개 댐저수지 인공습지를 대상으로 수심분포, 유입량 및 유출량, 물흐름분포, 체류시간, 수처리효율, 종횡비, 개방수역/폐쇄수역 구성비 등 습지의 운영현황 및 구조적 형상에 대한 분석을 통해 인공습지의 수질정화기능을 회복시킬 수 있는 개선대책 및 운영방안을 제시하였다. 조사대상 인공습지의 처리수는 하수처리장 방류수 또는 하천수였으며, 처리수의 수질은 외국의 인공습지에 비해 전반적으로 낮은 것으로 나타났다. 특히 처리수의 BOD는 모든 습지에서 3 mg/L 이하로 매우 낮았는데, 이는 하수처리장의 고도처리 및 평수기 저농도 하천수 취입에 기인된 것으로 판단된다. 수처리효율은 TN이 7.6~67.6%(평균 24.9%), TP가 -4.9~74.5%(평균 23.7%)의 범위로 하수처리장 방류수를 처리수로 하는 인공습지에서 높은 값을 보였다. BOD는 -133.3~41.7% 범위로 습지에 따라 큰 차이를 보였으며, 대부분 습지에서 처리효율이 없거나 낮은 것으로 나타났다. 인공습지의 낮은 처리효율은 습지의 부적합한 종행비, 과도한 개방수역 면적 등의 구조적인 문제와 수위관리 미흡, 초기우수 취입시스템 및 운영관리 미흡, 강우시 모니터링 부재 등의 운영적인 문제에 의한 것으로 나타났다. 그러므로 댐저수지 인공습지가 비점오염 저감시설로서의 역할을 할 수 있기 위해서는 댐저수지 인공습지에 적합한 습지설계 및 운영방안이 필요하다. 또한 습지 운영매뉴얼에 비점오염물질이 유출되는 강우시 모니터링이 반드시 포함되어야 하며, 댐저수지 인공습지의 수처리효율도 강우시 모니터링 자료를 토대로 평가되어야 할 것이다.

Keywords

References

  1. Choi, DH, Choi, K, Kim SW, Oh, YT, Kim, DS, Joh, SJ, Park, JC (2007). Water flow distribution and sedimentation characteristics of particle materials in the Shihwa Constructed Wetland, J. of KSEE, 29(4), pp. 425-437.[Korean Literature]
  2. Choi, DH, Choi, K, Kim, DS, Kim SW, Choi, DH, Hwang, IS, Lee, YK, Kang, H (2008). Temporal and spacial distributions of water quality and evaluation of pollutant removal efficiency in the Sihwa constructed wetland, J. of KSEE, 30(10), pp. 1013-1020.[Korean Literature]
  3. Choi, DH, Kang, H, Choi, K (2010). Case study on the improvement of pollutant removal efficiency in Sihwa constructed wetland, J. of Wetlands Research, 12(2), pp. 25-33.[Korean Literature]
  4. Kang, HJ, Song, KY (2004). Water treatment using constructed wetlands and research perspectives in Korea, J. of Wetlands Research, 6(2), pp. 57-63. [Korean Literature]
  5. K-water (2006) Improvement of Water Purification Ability of the Sihwa Constructed Wetland, K-water.
  6. MAFRA, KRC (2004). Design and Management Points of Constructed Wetland for improving the agricultural water, Ministry of Agricultue, Fodd and Rural Affair(MAFRA) and Korea Rural Community Corporation(KRC).
  7. Moshiri, GA (1993). Constructed Wetlands for Water Quality Improvement, CRC Press Inc., Lewis Publishers, London, pp. 35-58.
  8. MOE (2008). Manual for Installation, Operation, and Management of Non-point pollutants reduction facilities, Ministry of Environment(MOE).
  9. MOE (2012). Guideline for Non-point Sources Management in TMDL Development Plan, Ministry of Environment(MOE).
  10. NADB (1993). Electronic Database Created by R. Knight, R.Ruble, R. Kadlec, and S. Reed for the U.S. Environmental Protection Agency, Cincinnati, Ohio.
  11. Nakamaura, K, Chiba, T, Sato, K, Morita, Y, Hosomi, M, Tanaka, S (2002) "A survey of construction wetlands in Japan," in Proceeding of the 8th International Conference on Wetland System for Water Pollution Control, 1, pp. 1128-1132.
  12. Nam, GS (2003). Biological purification and bacterial community dynamics of an agricultural reservoir, Ph.D. Dissertation, Busan University, Busan, Korea. [Korean Literature]
  13. Park, JS, Kim, KS, Kim, YC, Rhee, KH (2012). Evaluation of treatment efficiences of water quality for 5 years in constructed wetland to upper region of water source, J. of Wetlands Research, 14(4), pp. 479-488.[Korean Literature]
  14. UDI (2010). A Study on the Effect Analysis and Improvement Plan of Hyoiya Constructed Wetland, Ulsan Development Institute(UDI).
  15. USDA (2002). National Engineering Handbook Part 637: Environmental Engineering, Chapter 3 Wetland Construction, USDA, Washington, pp. 41-43.
  16. USEPA (2000). Design Manual; Constructed Wetlands Treatment of Municipal Wastewaters, U.S. EPA 625/R-99/010, Cincinnati, Ohio, pp. 12-20.
  17. YSRSC (2009). Alternative of Optimum Management and Analysis of Removal Efficiency for Treating the Wastewater in Constructed Wetland to Upper Region of Juam Lake. Yongsan-Somjin River System Commission(SRSC).