DOI QR코드

DOI QR Code

δ-좌표계에서 동수압 계산 수중벽체 인근흐름 수치모형실험

Modeling Three-dimensional Free Surface Flow around Thin Wall Incorporation Hydrodynamic Pressure on δ-coordinate

  • 김효섭 (국민대학교 건설시스템공학과) ;
  • 유호준 ((주)지오시스템리서치 부설연구소) ;
  • 진재율 (한국해양과학기술원 연안재해재난연구센터) ;
  • 장창환 (특허청 심사1국 국토환경심사과) ;
  • 이정수 (국민대학교 건설시스템공학과) ;
  • 백승원 (국민대학교 건설시스템공학과)
  • Kim, Hyo-Seob (Department of Civil Engineering, kookmin university) ;
  • Yoo, Ho-Jun (Department of Coastal Oceanography and Engineering, Geosystem Research Corporation) ;
  • Jin, Jae-Yul (Coast Disaster Research Center, Korea Institute of Ocean Science Technology) ;
  • Jang, Chang-Hwan (Civil Engineering and Environment Examination Division, Korean Intellectual Property Office) ;
  • Lee, Jung-Su (Department of Civil Engineering, kookmin university) ;
  • Baek, Seung-Won (Department of Civil Engineering, kookmin university)
  • 투고 : 2013.08.13
  • 심사 : 2014.05.06
  • 발행 : 2014.08.31

초록

물에 잠긴 얇은 벽은 잠제 사각형 블록의 극단적인 경우라고 할 수 있으며, 하천이나 해안지역에서 다양한 목적으로 사용될 수 있다. 잠제구조물의 얇은 벽 주위 흐름과 압력을 계산하기 위하여 동수압이 포함된 ${\sigma}$-격자체계의 3차원 수치모델을 수행하였고, 그 주변의 유속 흐름을 파악하였다. ${\sigma}$-격자체계는 완경사 하상에 유동 시뮬레이션을 적용할 수 있는 강력한 장점을 가지고 있다. 반면에 ${\sigma}$-격자체계는 하상에 날카로운 구조물등에 대한 해석에는 한계를 갖고 있다. 동압력 계산은 직교격자 시스템에서만 유효하다. CST3D시스템 내에 SOLA 기법을 ${\sigma}$-격자체계에 맞게 수정하여 채택하였다. 모델은 2차원 수조에서의 1차원 전자자기식유속계를 통한 관측자료를 통하여 검증하였고, 정수압 가정의 ${\sigma}$-격자체계 수치모형과의 비교를 통하여 정량적인 비교 검토를 수행하였다. 전체적으로 계산된 수평유속과 측정된 수평유속이 유사한 것으로 나타났다. 수리모형실험을 통한 관측자료의 결과를 수치모형이 10% 이내로 정확하게 모의하였고, 관측자료와 대조하였을시 와도의 분포를 유사하게 재현하였다. 수정 SOLA 방식을 채택하여 동수압이 고려되었고, ${\sigma}$-격자체계에 적용한 본 연구는 실제 관측자료를 잘 재현하였으며, 하구, 하천등의 구조물 주변에서의 유속분포를 검증할 시 매우 유용한 것으로 판단된다.

Submerged thin walls are extreme case of submerged rectangular blocks, and could be used for many purposes in rivers or coastal zones, e.g. to tsunami. To understand flow characteristics including flow and pressure fields around a specific submerged thin wall a numerical model was applied which includes computation of hydrodynamic pressure on ${\sigma}$-coordinate. ${\sigma}$-coordinate has strong merits for simulation of subcritical flow over mild-sloped beds. On the other hand ${\sigma}$-coordinate is quite poor to treat sharp structures on the bed. There have been a few trials to incorporate dynamic pressure in ${\sigma}$-coordinate by some researchers. One of the previous approaches includes process of sloving the Poisson equation. However, the above method includes many high-order terms, and requires long cpu for simulation. Another method SOLA was developed by Hirt et al. for computation of dynamic pressure, but it was valid for straight grid system only. Previous SOLA was modified for ${\sigma}$-coordinate for the present purpose and was adopted in a model system, CST3D. Computed flow field shows reasonable behaviour including vorticity is much stronger than the upstream and downstream of the structure. The model was verified to laboratory experiments at a 2DV flume. Time-average flow vectors were measured by using one-dimensional electro-magnetic velocimeter. Computed flow field agrees well with the measured flow field within 10 % error from the speed point of view at 5 profiles. It is thought that the modified SOLA scheme is useful for ${\sigma}$-coordinate system.

키워드

참고문헌

  1. Bin, L., Chris A.F., 2003. Three-dimensional hydrodynamic model for free surface flow. International Association of Hydraulic Research, Vol. 41, No 4. pp. 367-377.
  2. Flow Science., 2003. Flow-3D. Theory manual. Los Alamos, NM.
  3. Fluent Inc., 2005. Manual. Lebanon, NH 3766.
  4. Hirt, C.W., Nichols, B.D., 1975. SOLA-A Numerical Solution Algorithm for Transient Fluid Flows. Losa Alamos, NM.
  5. Kim, H., Lee, J., Jin, J., and Jang, C., 2013. A Practical Algorithm to Simulate Erosion of On-Shore Zone. J. of Wetlands Research, Vol. 15, No. 3, pp. 423-430.[Korean Literature] https://doi.org/10.17663/JWR.2013.15.3.423
  6. Louis, A,H., David, M.Y., 1981. Applied lterative Method, Academic Press, New York.
  7. Madala, R.A., Piacsek, S.A., 1977. A semi-implicit numerical model for baroclinic oceans, J. of Computational Physics, Vol. 23, Issue 2, PP. 167-178. https://doi.org/10.1016/0021-9991(77)90119-X
  8. Musteyde, B.K., Roger, A.F., Lin .B., 2002. Three-dimensional numerical modeling of free surface flows with non-hydrostatic pressure. International J. for Numerical Methods In Fluids, Vol. 40, pp. 1145-1162. https://doi.org/10.1002/fld.376
  9. Pengzhi, L., 2006. A multiple-layer $\sigma$-coordinate model for simulation of wave structure interaction. Computer & Fluids 35, pp. 147-167. https://doi.org/10.1016/j.compfluid.2004.11.008
  10. Pengzhi, L., 2002. A $\sigma$-coordinate three-dimensional numerical model for surface wave propagation. International J. for Numerical Methods In Fluids, Vol. 38, pp. 1045-1068. https://doi.org/10.1002/fld.258
  11. Smagorinsky, J., 1963. General circulation experiments with the primitive equations, Part I: the basic experiment. Mon. Wea. Rev, 91, PP. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  12. Tetra tech., 2007a. The Environmental Fluid Dynamic Code User Manual US EPA Version 1.01, Tetra Tech, Inc.