DOI QR코드

DOI QR Code

Exogenous Lytic Activity of SPN9CC Endolysin Against Gram-Negative Bacteria

  • Lim, Jeong-A (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Shin, Hakdong (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Heu, Sunggi (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Ryu, Sangryeol (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2014.03.13
  • Accepted : 2014.03.24
  • Published : 2014.06.28

Abstract

Concerns over drug-resistant bacteria have stimulated interest in developing alternative methods to control bacterial infections. Endolysin, a phage-encoded enzyme that breaks down bacterial peptidoglycan at the terminal stage of the phage reproduction cycle, is reported to be effective for the control of bacterial pathogenic bacteria. Bioinformatic analysis of the SPN9CC bacteriophage genome revealed a gene that encodes an endolysin with a domain structure similar to those of the endolysins produced by the P1 and P22 coliphages. The SPN9CC endolysin was purified with a C-terminal oligo-histidine tag. The endolysin was relatively stable and active over a broad temperature range (from $24^{\circ}C$ to $65^{\circ}C$). It showed maximal activity at $50^{\circ}C$, and its optimum pH range was from pH 7.5 to 8.5. The SPN9CC endolysin showed antimicrobial activity against only gram-negative bacteria and functioned by cutting the glycosidic bond of peptidoglycan. Interestingly, the SPN9CC endolysin could lyse intact gram-negative bacteria in the absence of EDTA as an outer membrane permeabilizer. The exogenous lytic activity of the SPN9CC endolysin makes it a potential therapeutic agent against gram-negative bacteria.

Keywords

References

  1. Baker JR, Liu C, Dong S, Pritchard DG. 2006. Endopeptidase and glycosidase activities of the bacteriophage B30 lysin. Appl. Environ. Microbiol. 72: 6825-6828. https://doi.org/10.1128/AEM.00829-06
  2. B ernhardt TG, Wang IN, Struck DK, Young R. 2002. Breaking free: "protein antibiotics" and phage lysis. Res. Microbiol. 153: 493-501. https://doi.org/10.1016/S0923-2508(02)01330-X
  3. Breithaupt H. 1999. The n ew antibiotics. Nat. Biotechnol. 17: 1165-1169. https://doi.org/10.1038/70705
  4. B riers Y, Volckaert G, Cornelissen A, Lagaert S, Michiels CW, Hertveldt K, Lavigne R. 2007. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL. Mol. Microbiol. 65: 1334-1344. https://doi.org/10.1111/j.1365-2958.2007.05870.x
  5. Briers Y, Walmagh M, Lavigne R. 2011. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J. Appl. Microbiol. 110: 778-785. https://doi.org/10.1111/j.1365-2672.2010.04931.x
  6. D uring K, Porsch P, Mahn A, Brinkmann O, Gieffers W. 1999. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett. 449: 93-100. https://doi.org/10.1016/S0014-5793(99)00405-6
  7. Fein J E, R ogers HJ. 1976. Autolytic e nzyme-deficient mutants of Bacillus subtilis 168. J. Bacteriol. 127: 1427-1442.
  8. Fischetti VA. 2010. Bacteriophage endolysins: a novel antiinfective to control gram-positive pathogens. Int. J. Med. Microbiol. 300: 357-362. https://doi.org/10.1016/j.ijmm.2010.04.002
  9. F ukushima T, Yao Y, Kitajima T, Yamamoto H, Sekiguchi J. 2007. Characterization of new L,D-endopeptidase gene product CwlK (previous YcdD) that hydrolyzes peptidoglycan in Bacillus subtilis. Mol. Genet. Genomics 278: 371-383. https://doi.org/10.1007/s00438-007-0255-8
  10. Hadzija O. 1974. A simple method for the quantitative determination of muramic acid. Anal. Biochem. 60: 512-517. https://doi.org/10.1016/0003-2697(74)90261-9
  11. Hawkey PM. 2008. The growing burden of antimicrobial resistance. J. Antimicrob. Chemother. 62: i1-i9. https://doi.org/10.1093/jac/dkn241
  12. Hazenberg MP, de Visser H. 1992. Assay for N-acetylmuramyl- L-alanine amidase in serum by determination of muramic acid released from the peptidoglycan of Brevibacterium divaricatum. Eur. J. Clin. Chem. Clin. Biochem. 30: 141-144.
  13. Hermoso JA, Garcia JL, Garcia P. 2007. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr. Opin. Microbiol. 10: 461-472. https://doi.org/10.1016/j.mib.2007.08.002
  14. Holtje JV, Mirelman D, Sharon N, Schwarz U. 1975. Novel type of murein transglycosylase in Escherichia coli. J. Bacteriol. 124: 1067-1076.
  15. Junn H J, Y oun J, Suh KH, Lee SS. 2005. Cloning and expression of Klebsiella phage K11 lysozyme gene. Protein Expr. Purif. 42: 78-84. https://doi.org/10.1016/j.pep.2005.03.026
  16. Kikkawa H, Fujinami Y, Suzuki S, Yasuda J. 2007. Identification of the amino acid residues critical for specific binding of the bacteriolytic enzyme of gamma-phage, PlyG, to Bacillus anthracis. Biochem. Biophys. Res. Commun. 363: 531-535. https://doi.org/10.1016/j.bbrc.2007.09.002
  17. K rogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305: 567-580. https://doi.org/10.1006/jmbi.2000.4315
  18. Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132. https://doi.org/10.1016/0022-2836(82)90515-0
  19. L ai MJ, Lin NT, Hu A, Soo PC, Chen LK, Chen LH, Chang KC. 2011. Antibacterial activity of Acinetobacter baumannii phage AB2 endolysin (LysAB2) against both gram-positive and gram-negative bacteria. Appl. Microbiol. Biotechnol. 90: 529-539. https://doi.org/10.1007/s00253-011-3104-y
  20. Lim JA, Shin H, Kang DH, Ryu S. 2012. Characterization of endolysin from a Salmonella Typhimurium-infecting bacteriophage SPN1S. Res. Microbiol. 163: 233-241. https://doi.org/10.1016/j.resmic.2012.01.002
  21. Livermore DM. 2004. The need for new antibiotics. Clin. Microbiol. Infect. 10: 1-9.
  22. Loeffler J M, D jurkovic S , Fischetti VA. 2003. Phage l ytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect. Immun. 71: 6199-6204. https://doi.org/10.1128/IAI.71.11.6199-6204.2003
  23. Loessner MJ. 2005. Bacteriophage endolysins - current state of research and applications. Curr. Opin. Microbiol. 8: 480-487. https://doi.org/10.1016/j.mib.2005.06.002
  24. Lu kacik P, Barnard TJ, Hinnebusch BJ, Buchanan SK. 2013. Specific targeting and killing of gram-negative pathogens with an engineered phage lytic enzyme. Virulence 4: 90-91. https://doi.org/10.4161/viru.22683
  25. L ukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, et al. 2012. Structural engineering of a phage lysin that targets gram-negative pathogens. Proc. Natl. Acad. Sci. USA 109: 9857-9862. https://doi.org/10.1073/pnas.1203472109
  26. M archler-Bauer A, Anderson JB, Derbyshire MK, DeWeese- Scott C, Gonzales NR, Gwadz M, et al. 2007. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 35: D237-D240. https://doi.org/10.1093/nar/gkl951
  27. M ikoulinskaia GV, Odinokova IV, Zimin AA, Lysanskaya VY, Feofanov SA, Stepnaya OA. 2009. Identification and characterization of the metal ion-dependent L-alanoyl-Dglutamate peptidase encoded by bacteriophage T5. FEBS J. 276: 7329-7342. https://doi.org/10.1111/j.1742-4658.2009.07443.x
  28. Mir oshnikov KA, Faizullina NM, Sykilinda NN, Mesyanzhinov VV. 2006. Properties of the endolytic transglycosylase encoded by gene 144 of Pseudomonas aeruginosa bacteriophage phiKZ. Biochemistry (Mosc) 71: 300-305. https://doi.org/10.1134/S0006297906030102
  29. M orita M, Tanji Y, Orito Y, Mizoguchi K, Soejima A, Unno H. 2001. Functional analysis of antibacterial activity of Bacillus amyloliquefaciens phage endolysin against gram-negative bacteria. FEBS Lett. 500: 56-59. https://doi.org/10.1016/S0014-5793(01)02587-X
  30. Na kimbugwe D, Masschalck B, Atanassova M, Zewdie- Bosuner A, Michiels CW. 2006. Comparison of bactericidal activity of six lysozymes at atmospheric pressure and under high hydrostatic pressure. Int. J. Food Microbiol. 108: 355-363.
  31. N ariya H, Miyata S, Tamai E, Sekiya H, Maki J, Okabe A. 2011. Identification and characterization of a putative endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Appl. Microbiol. Biotechnol. 90: 1973-1979. https://doi.org/10.1007/s00253-011-3253-z
  32. P aradis-Bleau C, Cloutier I, Lemieux L, Sanschagrin F, Laroche J, Auger M, et al. 2007. Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage phiKZ gp144 lytic transglycosylase. FEMS Microbiol. Lett. 266: 201-209. https://doi.org/10.1111/j.1574-6968.2006.00523.x
  33. Park JT, Johnson MJ. 1949. A submicrodetermination of glucose. J. Biol. Chem. 181: 149-151.
  34. Pritchard DG, Dong S, Baker JR, Engler JA. 2004. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 150: 2079-2087. https://doi.org/10.1099/mic.0.27063-0
  35. Sambrook J RD. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
  36. Sass P, Bierbaum G. 2007. Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl. Environ. Microbiol. 73: 347-352. https://doi.org/10.1128/AEM.01616-06
  37. Scheurwater E, Reid CW, Clarke AJ. 2008. Lytic transglycosylases: bacterial space-making autolysins. Int. J. Biochem. Cell Biol. 40: 586-591. https://doi.org/10.1016/j.biocel.2007.03.018
  38. Schuch R, Nelson D, Fischetti VA. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418: 884-889. https://doi.org/10.1038/nature01026
  39. Shin H, Lee JH, Yoon H, Kang DH, Ryu S. 2014. Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC. Appl. Environ. Microbiol. 80: 374-384. https://doi.org/10.1128/AEM.02279-13
  40. Su mmer EJ, Berry J, Tran TA, Niu L, Struck DK, Young R. 2007. Rz/Rz1 lysis gene equivalents in phages of gramnegative hosts. J. Mol. Biol. 373: 1098-1112. https://doi.org/10.1016/j.jmb.2007.08.045
  41. Sun Q, Kuty GF, Arockiasamy A, Xu M, Young R, Sacchettini JC. 2009. Regulation of a muralytic enzyme by dynamic membrane topology. Nat. Struct. Mol. Biol. 16: 1192-1194. https://doi.org/10.1038/nsmb.1681
  42. Tur ner MS, Hafner LM, Walsh T, Giffard PM. 2004. Identification, characterisation and specificity of a cell wall lytic enzyme from Lactobacillus fermentum B R11. FEMS Microbiol. Lett. 238: 9-15.
  43. Tur ner MS, Waldherr F, Loessner MJ, Giffard PM. 2007. Antimicrobial activity of lysostaphin and a Listeria monocytogenes bacteriophage endolysin produced and secreted by lactic acid bacteria. Syst. Appl. Microbiol. 30: 58-67. https://doi.org/10.1016/j.syapm.2006.01.013
  44. Uch iyama J, Takemura I, Hayashi I, Matsuzaki S, Satoh M, Ujihara T, et al. 2011. Characterization of lytic enzyme open reading frame 9 (ORF9) derived from Enterococcus faecalis bacteriophage phiEF24C. Appl. Environ. Microbiol. 77: 580-585. https://doi.org/10.1128/AEM.01540-10
  45. Xu M, Arulandu A, Struck DK, Swanson S, Sacchettini JC, Young R. 2005. Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme. Science 307: 113-117. https://doi.org/10.1126/science.1105143
  46. Z dobnov EM, Apweiler R. 2001. InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847-848. https://doi.org/10.1093/bioinformatics/17.9.847

Cited by

  1. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria vol.10, pp.3, 2014, https://doi.org/10.2217/fmb.15.8
  2. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria vol.10, pp.3, 2014, https://doi.org/10.2217/fmb.15.8
  3. Antibacterial Activity of Stenotrophomonas maltophilia Endolysin P28 against both Gram-positive and Gram-negative Bacteria vol.6, pp.None, 2014, https://doi.org/10.3389/fmicb.2015.01299
  4. Antibacterial Activity of a Novel Peptide-Modified Lysin Against Acinetobacter baumannii and Pseudomonas aeruginosa vol.6, pp.None, 2015, https://doi.org/10.3389/fmicb.2015.01471
  5. Antimicrobial bacteriophage-derived proteins and therapeutic applications vol.5, pp.3, 2014, https://doi.org/10.1080/21597081.2015.1062590
  6. Enhanced Antibacterial Activity of Acinetobacter baumannii Bacteriophage ØABP-01 Endolysin (LysABP-01) in Combination with Colistin vol.7, pp.None, 2014, https://doi.org/10.3389/fmicb.2016.01402
  7. Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.01807
  8. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii vol.14, pp.5, 2014, https://doi.org/10.1111/pbi.12490
  9. Bacteriophage Endolysins and their Applications vol.99, pp.2, 2014, https://doi.org/10.3184/003685016x14627913637705
  10. DUF3380 Domain from a Salmonella Phage Endolysin Shows Potent N-Acetylmuramidase Activity vol.82, pp.16, 2014, https://doi.org/10.1128/aem.00446-16
  11. In vitro study of the antibacterial effect of the bacteriophage T5 thermostable endolysin on Escherichia coli cells vol.121, pp.5, 2014, https://doi.org/10.1111/jam.13251
  12. A Novel Antimicrobial Endolysin, LysPA26, against Pseudomonas aeruginosa vol.8, pp.None, 2014, https://doi.org/10.3389/fmicb.2017.00293
  13. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections vol.43, pp.5, 2014, https://doi.org/10.1080/1040841x.2016.1271309
  14. Modular endolysin of Burkholderia AP3 phage has the largest lysozyme-like catalytic subunit discovered to date and no catalytic aspartate residue vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-14797-9
  15. Expression of a Peptidoglycan Hydrolase from Lytic Bacteriophages Atu_ph02 and Atu_ph03 Triggers Lysis of Agrobacterium tumefaciens vol.83, pp.23, 2014, https://doi.org/10.1128/aem.01498-17
  16. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? vol.102, pp.6, 2014, https://doi.org/10.1007/s00253-018-8811-1
  17. A Novel Phage PD-6A3, and Its Endolysin Ply6A3, With Extended Lytic Activity Against Acinetobacter baumannii vol.9, pp.None, 2014, https://doi.org/10.3389/fmicb.2018.03302
  18. Characteristics of Two Lysis-Related Proteins from a Shewanella putrefaciens Phage with High Lytic Activity and Wide Spectrum vol.81, pp.2, 2018, https://doi.org/10.4315/0362-028x.jfp-17-144
  19. Ts2631 Endolysin from the Extremophilic Thermus scotoductus Bacteriophage vB_Tsc2631 as an Antimicrobial Agent against Gram-Negative Multidrug-Resistant Bacteria vol.11, pp.7, 2019, https://doi.org/10.3390/v11070657
  20. Factors determining phage stability/activity: challenges in practical phage application vol.17, pp.8, 2014, https://doi.org/10.1080/14787210.2019.1646126
  21. Bioinformatic analyses of a potential Salmonella-virus-FelixO1 biocontrol phage BPS15S6 and the characterisation and anti-Enterobacteriaceae-pathogen activity of its endolysin LyS15S6 vol.112, pp.11, 2014, https://doi.org/10.1007/s10482-019-01283-7
  22. Tackling Multidrug Resistance in Streptococci – From Novel Biotherapeutic Strategies to Nanomedicines vol.11, pp.None, 2014, https://doi.org/10.3389/fmicb.2020.579916
  23. Application of a Novel Phage LPSEYT for Biological Control of Salmonella in Foods vol.8, pp.3, 2014, https://doi.org/10.3390/microorganisms8030400
  24. Characterization of Endolysin LysECP26 Derived from rV5-Like Phage vB_EcoM-ECP26 for Inactivation of Escherichia coli O157:H7 vol.30, pp.10, 2014, https://doi.org/10.4014/jmb.2005.05030
  25. Opportunities for broadening the application of cell wall lytic enzymes vol.104, pp.21, 2014, https://doi.org/10.1007/s00253-020-10862-y
  26. Mining of Gram-Negative Surface-Active Enzybiotic Candidates by Sequence-Based Calculation of Physicochemical Properties vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.660403
  27. Manufacturing of bacteriophages for therapeutic applications vol.49, pp.None, 2014, https://doi.org/10.1016/j.biotechadv.2021.107758
  28. Membrane-Permeable Antibacterial Enzyme against Multidrug-Resistant Acinetobacter baumannii vol.7, pp.8, 2014, https://doi.org/10.1021/acsinfecdis.1c00222
  29. Current Status of Endolysin-Based Treatments against Gram-Negative Bacteria vol.10, pp.10, 2014, https://doi.org/10.3390/antibiotics10101143
  30. Screening of a Plesiomonas shigelloides phage and study of the activity of its lysis system vol.306, pp.None, 2014, https://doi.org/10.1016/j.virusres.2021.198581
  31. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application vol.10, pp.12, 2021, https://doi.org/10.3390/antibiotics10121497
  32. Cloning and expression of the bacteriophage-derived endolysin against Aeromonas hydrophila vol.947, pp.1, 2014, https://doi.org/10.1088/1755-1315/947/1/012035
  33. Intrinsic Antimicrobial Peptide Facilitates a New Broad-Spectrum Lysin LysP53 to Kill Acinetobacter baumannii In Vitro and in a Mouse Burn Infection Model vol.7, pp.12, 2014, https://doi.org/10.1021/acsinfecdis.1c00497