References
- Almog J, Cohen Y, Azoury M, Hahn TR. 2004. Genipin - a novel fingerprint reagent with colorimetric and fluorogenic activity. J. Forensic Sci. 49: 255-257.
-
Bowers EM, Ragland LO, Byers LD. 2007. Salt effects on
$\beta$ - glucosidase: pH-profile narrowing. Biochim. Biophys. Acta 1774: 1500-1507. https://doi.org/10.1016/j.bbapap.2007.10.007 - Bradford MM. 1976. A rapid a nd s ensitive m ethod for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
-
Chen M, Qin YQ, Liu ZY, Liu K, Wang FS, Qu YB. 2010. Isolation and characterization of a
${\beta}$ -glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme Microb. Technol. 46: 444-449. https://doi.org/10.1016/j.enzmictec.2010.01.008 - Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW. 2004. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release 96: 285-300. https://doi.org/10.1016/j.jconrel.2004.02.002
- Chiono V, Pulieri E, Vozzi G, Ciardelli G, Ahluwalia A, Giusti P. 2008. Genipin-crosslinked chitosan/gelatin blends for biomedical applications. J. Mater. Sci. Mater. Med. 19: 889-898. https://doi.org/10.1007/s10856-007-3212-5
-
Diao JS, Wang L, Chen Z, Liu H, Nie GJ, Zheng ZM. 2010. Strain improvement and optimization for
$\beta$ -glucosidase production in Aspergillus niger by low-energy$N^{+}$ implantation. J. Radiat. Res. Radiat. Process. 28: 345-351. [In Chinese] - Djerassi C, Gray JD, Kincl FA. 1960. Naturally occurring oxygen heterocyclics. IX. Isolation and characterization of genipin. J. Org. Chem. 25: 2174-2177. https://doi.org/10.1021/jo01082a022
- Djerassi C, Nakano T, James AN, Zalkow LH, Eisenbraun EJ, Shoolery JN. 1961. Terpenoids. XLVII. The structure of genipin. J. Org .Chem. 26: 1192-1206. https://doi.org/10.1021/jo01063a052
- Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316. https://doi.org/10.1042/bj2800309
- Henrissat B, Bairoch A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788. https://doi.org/10.1042/bj2930781
- Koo HJ, Song YS, Kim HJ, Lee YH, Hong SM, Kim SJ, et al. 2004. Antiinflammatory effects of genipin, an active principle of gardenia. Eur. J. Pharmacol. 495: 201-208. https://doi.org/10.1016/j.ejphar.2004.05.031
- Lee SW, Lim JM, Bhoo SH, Paik YS, Hahn TR. 2003. Colorimetric determination of amino acids using genipin from Gardenia jasminoides. Anal. Chim. Acta 480: 267-274. https://doi.org/10.1016/S0003-2670(03)00023-0
- Lineweaver H, Burk D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
-
Pei JJ, Pang Q, Zhao LG, Fan S, Shi H. 2012. Thermoanaerobacterium thermosaccharolyticum
$\beta$ -glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol. Biofuels 5: 31-40. https://doi.org/10.1186/1754-6834-5-31 -
Saibi W, Gargouri A. 2011. Purification and biochemical characterization of an atypical
$\beta$ -glucosidase from Stachybotrys microspora. J. Mol. Catal. B Enzym. 72: 107-115. https://doi.org/10.1016/j.molcatb.2011.05.007 -
Wang JF, Chen JZ, L iang HZ, Rao J , Li J . 2010. Purification and characterization of geniposide-hydrolyzing
$\beta$ -glucosidase from Aspergillus niger. Mycosystema 29: 683-690. [In Chinese] - Xu MM, Sun Q, Su J, Wang JF, Xu C, Zhang T, Sun QL. 2008. Microbial transformation of geniposide in Gardenia jasminoides Ellis into genipin by Penicillium nigricans. Enzyme Microb. Technol. 42: 440-444. https://doi.org/10.1016/j.enzmictec.2008.01.003
-
Yang YS, Zhang T, Yu SC, Ding Y, Zhang LY, Qiu C, Jin D. 2011. Transformation of geniposide into genipin by immobilized
$\beta$ -glucosidase in a two-phase aqueous-organic system. Molecules 16: 4295-4304. https://doi.org/10.3390/molecules16054295 - Yuan Y, Chesnutt BM, Utturkar G, Haggard WO, Yang Y, Ong JL, Bumgardner JD. 2007. The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohyd. Polym. 68: 561-567. https://doi.org/10.1016/j.carbpol.2006.10.023
- Zhang CY, Parton LE, Ye CP, Krauss S, Shen R, Lin CT, et al. 2006. Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets. Cell Metab. 3: 417-427. https://doi.org/10.1016/j.cmet.2006.04.010
Cited by
- Characterization of a Novel β-Glucosidase from Gongronella sp. W5 and Its Application in the Hydrolysis of Soybean Isoflavone Glycosides vol.62, pp.48, 2014, https://doi.org/10.1021/jf502850z
- A Substrate Fed-Batch Biphasic Catalysis Process for the Production of Natural Crosslinking Agent Genipin with Fusarium solani ACCC 36223 vol.25, pp.6, 2014, https://doi.org/10.4014/jmb.1407.07045
- Contribution of arginase to manganese metabolism of Aspergillus niger vol.29, pp.1, 2014, https://doi.org/10.1007/s10534-015-9900-6
- Optimization of a heat‐tolerant β‐glucosidase production by Bacillus sp. ZJ1308 and its purification and characterization vol.63, pp.4, 2014, https://doi.org/10.1002/bab.1405
- Highly Efficient Enzymatic Preparation of Daidzein in Deep Eutectic Solvents vol.22, pp.1, 2014, https://doi.org/10.3390/molecules22010186
- Enhancement of active compound, genipin, from Gardeniae Fructus using immobilized glycosyl hydrolase family 3 β-glucosidase from Lactobacillus antri vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0360-y
- Production of steviol from steviol glucosides using β-glucosidase from a commercial pectinase, Sumizyme PX vol.40, pp.1, 2018, https://doi.org/10.1007/s10529-017-2460-9
- Lactobacillus casei Strain Shirota Enhances the In Vitro Antiproliferative Effect of Geniposide in Human Oral Squamous Carcinoma HSC-3 Cells vol.23, pp.5, 2014, https://doi.org/10.3390/molecules23051069
- Characterization of Three Extracellular β-Glucosidases Produced by a Fungal Isolate Aspergillus sp. YDJ14 and Their Hydrolyzing Activity for a Flavone Glycoside vol.28, pp.5, 2014, https://doi.org/10.4014/jmb.1802.02051
- Purification and characterization of a novel β-glucosidase from Aspergillus flavus and its application in saccharification of soybean meal vol.49, pp.7, 2014, https://doi.org/10.1080/10826068.2019.1599397
- Enhanced Activity of the Cellulase Enzyme β-Glucosidase upon Addition of an Azobenzene-Based Surfactant vol.8, pp.4, 2014, https://doi.org/10.1021/acssuschemeng.9b05240
- Unconventional β-Glucosidases: A Promising Biocatalyst for Industrial Biotechnology vol.193, pp.9, 2021, https://doi.org/10.1007/s12010-021-03568-y