DOI QR코드

DOI QR Code

Two-Stage Fermentation for 2-Ketogluconic Acid Production by Klebsiella pneumoniae

  • Sun, Yuehong (Department of Biological Engineering, College of Environmental and Chemical Engineering, Yanshan University) ;
  • Wei, Dong (Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences) ;
  • Shi, Jiping (Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences) ;
  • Mojovic, Ljiljana (Faculty of Technology and Metallurgy, University of Belgrade) ;
  • Han, Zengsheng (Department of Biological Engineering, College of Environmental and Chemical Engineering, Yanshan University) ;
  • Hao, Jian (Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences)
  • Received : 2014.01.21
  • Accepted : 2014.02.26
  • Published : 2014.06.28

Abstract

2-Ketogluconic acid production by Klebsiella pneumoniae is a pH-dependent process, strictly proceeding under acidic conditions. Unfortunately, cell growth is inhibited by acidic conditions, resulting in low productivity of 2-ketogluconic acid. To overcome this deficiency, a two-stage fermentation strategy was exploited in the current study. During the first stage, the culture was maintained at neutral pH, favoring cell growth. During the second stage, the culture pH was switched to acidic conditions favoring 2-ketogluconic acid accumulation. Culture parameters, including switching time, dissolved oxygen levels, pH, and temperature were optimized for the fed-batch fermentation. Characteristics of glucose dehydrogenase and gluconate dehydrogenase were revealed in vitro, and the optimal pHs of the two enzymes coincided with the optimum culture pH. Under optimum conditions, a total of 186 g/l 2-ketogluconic acid was produced at 26 h, and the conversion ratio was 0.98 mol/mol. This fermentation strategy has successfully overcome the mismatch between optimum parameters required for cell growth and 2-ketogluconic acid accumulation, and this result has the highest productivity and conversion ratio of 2-ketogluconic and produced by microorganism.

Keywords

References

  1. Baneyx F, Ayling A, Palumbo T, Thomas D, Georgiou G. 1991. Optimization of growth conditions for the production of proteolytically-sensitive proteins in the periplasmic space of Escherichia coli. Appl. Microbiol. Biotechnol. 36: 14-20. https://doi.org/10.1007/BF00164691
  2. Bouvet OMM, Lenormand P, Grimont PAD. 1989. Taxonomic diversity of the D-glucose oxidation pathway in the Enterobacteriaceae. Int. J. Syst. Bacteriol. 39: 61-67. https://doi.org/10.1099/00207713-39-1-61
  3. Castillo TD, Ramos JL, Rodriguez-Herva JJ, Fuhrer T, Sauer U, Duque E. 2007. Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J. Bacteriol. 189: 5142-5152. https://doi.org/10.1128/JB.00203-07
  4. Chia M, Van Nguyen TB, Choi WJ. 2008. DO-stat f ed-batch production of 2-keto-D-gluconic acid from cassava using immobilized Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 78: 759-765. https://doi.org/10.1007/s00253-008-1374-9
  5. Hao J, Lin R, Zheng Z, Liu H, Liu D. 2008. Isolation and characterization of microorganisms able to produce 1,3- propanediol under aerobic conditions. World J. Microbiol. Biotechnol. 24: 1731-1740. https://doi.org/10.1007/s11274-008-9665-y
  6. Hommes R, Postma P, Tempest D, Neijssel O. 1989. The influence of the culture pH value on the direct glucose oxidative pathway in Klebsiella pneumoniae NCTC 418. Arch. Microbiol. 151: 261-267. https://doi.org/10.1007/BF00413140
  7. Hwangbo H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, et al. 2003. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47: 87-92. https://doi.org/10.1007/s00284-002-3951-y
  8. Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P. 2009. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 82: 49-57. https://doi.org/10.1007/s00253-008-1732-7
  9. Misenheimer T, Anderson R, Lagoda A, Tyler D. 1965. Production of 2-ketogluconic acid by Serratia marcescens. Appl. Microbiol. 13: 393-396.
  10. Neijssel O, Tempest D. 1975. Production of gluconic acid and 2-ketogluconic acid by Klebsiella aerogenes NCTC 418. Arch. Microbiol. 105: 183-185. https://doi.org/10.1007/BF00447135
  11. Sharma N, Parshad R, Qazi G. 1992. Electron transport system associated with direct glucose oxidation in Gluconobacter oxydans. Biotechnol. Lett. 14: 391-396. https://doi.org/10.1007/BF01021253
  12. Sun W-J, Zhou Y-Z, Zhou Q, Cui F-J, Yu S-L, Sun L. 2012. Semi-continuous production of 2-keto-gluconic acid by Pseudomonas fluorescens AR4 from rice starch hydrolysate. Bioresour. Technol. 110: 546-551. https://doi.org/10.1016/j.biortech.2012.01.040
  13. Svitel J, Sturdik E. 1995. 2-Ketogluconic acid production by Acetobacter pasteurianus. Appl. Biochem. Biotechnol. 53: 53-63. https://doi.org/10.1007/BF02783481
  14. Swanson BL, Hager P, Phibbs P, Ochsner U, Vasil ML, Hamood AN. 2000. Characterization of the 2-ketogluconate utilization operon in Pseudomonas aeruginosa PAO1. Mol. Microbiol. 37: 561-573.
  15. Tlemcani LL, Corroler D, Barillier D, Mosrati R. 2008. Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose. Arch. Microbiol. 190: 141-150. https://doi.org/10.1007/s00203-008-0380-8
  16. Toyama H, Furuya N, Saichana I, Ano Y, Adachi O, Matsushita K. 2007. Membrane-bound, 2-keto-D-gluconateyielding D-gluconate dehydrogenase from Gluconobacter dioxyacetonicus IFO 3271: molecular properties and gene disruption. Appl. Environ. Microbiol. 73: 6551-6556. https://doi.org/10.1128/AEM.00493-07
  17. Weenk G, Olijve W, Harder W. 1984. Ketogluconate formation by Gluconobacter species. Appl. Microbiol. Biotechnol. 20: 400-405.
  18. Wei D, Sun J, Shi J, Liu P, Hao J. 2013. New strategy to improve efficiency for gene replacement in Klebsiella pneumoniae. J. Ind. Microbiol. Biotechnol. 40: 523-552. https://doi.org/10.1007/s10295-013-1250-1
  19. Wei D, Wang M, Shi J, Hao J. 2012. Red recombinase assisted gene replacement in Klebsiella pneumoniae. J. Ind. Microbiol. Biotechnol. 39: 1219-1226. https://doi.org/10.1007/s10295-012-1117-x
  20. Wei D, Xu J, Sun J, Shi J, Hao J. 2013. 2-Ketogluconic acid production by Klebsiella pneumoniae CGMCC 1.6366. J. Ind. Microbiol. Biotechnol. 40: 561-570. https://doi.org/10.1007/s10295-013-1261-y
  21. Xu Y-Z, Wu R-C, Zheng Z-M, Liu D-H. 2011. Influence of dhaT mutation of K. pneumoniae on 1,3-propanediol fermentation. World J. Microbiol. Biotechnol. 27: 1491-1497. https://doi.org/10.1007/s11274-010-0602-5

Cited by

  1. R-acetoin accumulation and dissimilation in Klebsiella pneumoniae vol.42, pp.8, 2015, https://doi.org/10.1007/s10295-015-1638-1
  2. Production of xylonic acid by Klebsiella pneumoniae vol.100, pp.23, 2014, https://doi.org/10.1007/s00253-016-7825-9
  3. Gluconic acid production by gad mutant of Klebsiella pneumoniae vol.32, pp.8, 2016, https://doi.org/10.1007/s11274-016-2080-x
  4. Enhanced fed-batch production of pyrroloquinoline quinine in Methylobacillus sp. CCTCC M2016079 with a two-stage pH control strategy vol.101, pp.12, 2014, https://doi.org/10.1007/s00253-017-8259-8
  5. Enhancing 2-Ketogluconate Production of Pseudomonas plecoglossicida JUIM01 by Maintaining the Carbon Catabolite Repression of 2-Ketogluconate Metabolism vol.23, pp.10, 2014, https://doi.org/10.3390/molecules23102629
  6. The Role of kguT Gene in 2-Ketogluconate-Producing Pseudomonas plecoglossicida JUIM01 vol.187, pp.3, 2014, https://doi.org/10.1007/s12010-018-2843-y
  7. Application of inorganic phosphate limitation to efficient isoprene production in Pantoea ananatis vol.128, pp.3, 2014, https://doi.org/10.1111/jam.14521
  8. CRISPR interference of nucleotide biosynthesis improves production of a single‐domain antibody in Escherichia coli vol.117, pp.12, 2020, https://doi.org/10.1002/bit.27536
  9. High-throughput screening for high-efficiency small-molecule biosynthesis vol.63, pp.None, 2014, https://doi.org/10.1016/j.ymben.2020.09.004
  10. 2-Keto-D-gluconic acid and prodigiosin producing by a Serratia marcescens vol.51, pp.7, 2014, https://doi.org/10.1080/10826068.2020.1852417