DOI QR코드

DOI QR Code

A Cold-Adapted Carbohydrate Esterase from the Oil-Degrading Marine Bacterium Microbulbifer thermotolerans DAU221: Gene Cloning, Purification, and Characterization

  • Received : 2014.02.18
  • Accepted : 2014.03.27
  • Published : 2014.07.28

Abstract

A cold-adapted carbohydrate esterase, CEST, belonging to the carbohydrate esterase family 6, was cloned from Microbulbifer thermotolerans DAU221. CEST was composed of 307 amino acids with the first 22 serving as a secretion signal peptide. The calculated molecular mass and isoelectric point of the mature enzyme were 31,244 Da and pH 5.89, respectively. The catalytic triad consisted of residues Ser37, Glu192, and His281 in the conserved regions: GQSNMXG, QGEX(D/N), and DXXH. The three-dimensional structure of CEST revealed that CEST belongs to the ${\alpha}/{\beta}$-class of protein consisted of a central six-stranded ${\beta}$-sheet flanked by eight ${\alpha}$-helices. The recombinant CEST was purified by His-tag affinity chromatography and the characterization showed its optimal temperature and pH were $15^{\circ}C$ and 8.0, respectively. Specifically, CEST maintained up to 70% of its enzyme activity when preincubated at $50^{\circ}C$ or $60^{\circ}C$ for 6 h, and 89% of its enzyme activity when preincubated at $70^{\circ}C$ for 1 h. The results suggest CEST belongs to group 3 of the cold-adapted enzymes. The enzyme activity was increased by $Na^+$ and $Mg^{2+}$ ions but was strongly inhibited by $Cu^+$ and $Hg^{2+}$ ions, at all ion concentrations. Using p-nitrophenyl acetate as a substrate, the enzyme had a $K_m$ of 0.278 mM and a $k_{cat}$ of $1.9s^{-1}$. Site-directed mutagenesis indicated that the catalytic triad (Ser37, Glu192, and His281) and Asp278 were essential for the enzyme activity.

Keywords

References

  1. Alalouf O, Balazs Y, Volkinshtein M, Grimpel Y, Shoham G, Shoham Y. 2011. A new family of carbohydrate esterases is represented by a GSDL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus. J. Biol. Chem. 86: 41993-42001.
  2. Al Khudary R, Venkatachalam R, Katzer M, Elleuche S, Antranikian G. 2010. A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization. Extremophiles 14: 273-285. https://doi.org/10.1007/s00792-010-0306-7
  3. Altschul SF, Madden TL, Schaffer AA, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  4. Aurilia V, Parracino A, Saviano M, Rossi M, D'Auria S. 2007. The psychrophilic bacterium Pseudoalteromonas halosplanktis TAC125 possesses a gene coding for a cold-adapted feruloyl esterase activity that shares homology with esterase enzymes from $\gamma$-proteobacteria and yeast. Gene 397: 51-57. https://doi.org/10.1016/j.gene.2007.04.004
  5. Ay F, Karaoglu H, Inan K, Canakci S, Belduz AO. 2011. Cloning, purification and characterization of a thermostable carboxylesterase from Anoxybacillus sp. PDF1. Protein Expr. Purif. 80: 74-79. https://doi.org/10.1016/j.pep.2011.06.019
  6. Babu J, Ramteke PW, Thomas G. 2008. Cold active microbial lipases: some hot issues and recent developments. Biotechnol. Adv. 26: 457-470. https://doi.org/10.1016/j.biotechadv.2008.05.003
  7. Biely P. 2012. Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol. Adv. 30: 1575-1588. https://doi.org/10.1016/j.biotechadv.2012.04.010
  8. Bitto E, Bingman CA, McCoy JG, Allard STM, Wesenberg E, Phillips Jr GN. 2005. The structure at 1.6 Å resolution of the protein product of the At4g34215 gene from Arabidopsis thaliana. Acta Crystallogr. D Biol. Crystallogr. D61: 1655-1661.
  9. Blum DL, Li XL, Chen H, Ljungdahl LG. 1999. Characterization of an acetyl xylanesterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl. Environ. Microbiol. 65: 3990-3995.
  10. Burgess JG. 2012. New and emerging analytical techniques for marine biotechnology. Curr. Opin. Biotechnol. 23: 29-33. https://doi.org/10.1016/j.copbio.2011.12.007
  11. Burton SG, Cowan DA, Woodley JM. 2002. The search for the ideal biocatalyst. Nat. Biotechnol. 20: 37-45. https://doi.org/10.1038/nbt0102-37
  12. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The Carbohydrate-Active Enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238. https://doi.org/10.1093/nar/gkn663
  13. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13: 253-261. https://doi.org/10.1016/S0958-1669(02)00317-8
  14. Collins T, De Vos D, Hoyoux A, Savvides SN, Gerday C, van Veeumen J, Feller G. 2005. Study of the active site residues of a glycoside hydrolase family 8 xylanase. J. Mol. Biol. 354: 425-435. https://doi.org/10.1016/j.jmb.2005.09.064
  15. Darlymple BP, Cybinski DH, Layton I, McSweeney CS, Xue GP, Swadling YJ, Lowry JB. 1997. Three Neocallimastix partiarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology 143: 2605-2614. https://doi.org/10.1099/00221287-143-8-2605
  16. Dheeman DS, Henehan GTM, Frias JM. 2011. Purification and properties of Amycolatopsis mediterranei DSM 43304 lipase and its potential in flavor ester synthesis. Bioresour. Technol. 102: 3373-3379. https://doi.org/10.1016/j.biortech.2010.11.074
  17. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, et al. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18: 103-107. https://doi.org/10.1016/S0167-7799(99)01413-4
  18. Gupta Udtha DBRK, Kouskoumvekaki I, Solsson L, Panagiotou G. 2011. The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnol. Adv. 29: 94-110. https://doi.org/10.1016/j.biotechadv.2010.09.003
  19. Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
  20. Jiang X, Huo Y, Cheng H, Zhang X, Zhu X, Wu M. 2012. Cloning, expression and characterization of a halotolerant esterase from a marine bacterium Pelagibacterium halotolerans B2T. Extremophiles 16: 427-435. https://doi.org/10.1007/s00792-012-0442-3
  21. Kam DK, Jun HS, Ha JK, Forsberg CW. 2005. Characteristics of adjacent family 6 acetylxylan esterases from Fibrobacter succinogenes and the interaction with the Xyn10E xylanase in hydrolysis of acetylated xylan. Can. J. Microbiol. 51: 821-832. https://doi.org/10.1139/w05-074
  22. Kelly LA, Sternberg MJE. 2009. Protein structure prediction of the web: a case study using the PHYRE server. Nat. Protoc. 4: 363-371. https://doi.org/10.1038/nprot.2009.2
  23. Kim SH, Park IH, Lee SC, Lee YS, Zhou Y, Kim CM, et al. 2008. Discovery of three novel lipase (lipA1, lipA2, and lipA3) and lipase-specific chaperone (lipB) genes present in Acinetobacter sp. DYL129. Appl. Microbiol. Biotechnol. 77: 1041-1051. https://doi.org/10.1007/s00253-007-1242-z
  24. Kulakova L, Galkin A, Nakayama T, Esaki N. 2004. Coldactive esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly $\rightarrow$Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 169: 59-65.
  25. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  26. Lemak S, Tchigvintsev A, Petit P, Flick R, Singer AU, Brown G, et al. 2012. Structure and activity of the coldactive and anion-activated carboxyl esterase OLEI01171 from the oil-degrading marine bacterium Oleispira antarctica. Biochem. J. 445: 193-203. https://doi.org/10.1042/BJ20112113
  27. Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, et al. 2005. Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J. Agric. Food Chem. 53: 7415-7420. https://doi.org/10.1021/jf051460k
  28. Lopez-Cortes N, Reyes-Duarte D, Beloqui A, Polaina J, Ghazi I, Golishina OV, et al. 2007. Catalytic role of conserved HQGE motif in the CE6 carbohydrate esterase family. FEBS Lett. 581: 4657-4662. https://doi.org/10.1016/j.febslet.2007.08.060
  29. Margesin R, Feller G. 2010. Biotechnological applications of psychrophiles. Environ. Technol. 31: 835-844. https://doi.org/10.1080/09593331003663328
  30. Miyazaki M, Nogi Y, Ohta Y, Hatada Y, Fujiwara Y, Ito S, Horikoshi K. 2008. Microbulbifer agarlyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int. J. Syst. Evol. Microbiol. 58: 1128-1133. https://doi.org/10.1099/ijs.0.65507-0
  31. Ohgiya S, Hoshino T, Okuyama H, Tanaka S, Ishizaki K. 1999. Biotechnology of enzymes from cold-adapted microorganisms, pp. 17-34. In Margesin R, Schinner F (eds.). Biotechnological Applications of Cold-Adapted Organisms, Heidelberg, Springer- Verlag.
  32. Ohta Y, Hatada Y, Nogi Y, Li Z, Ito S, Horikoshi K. 2004. Cloning, expression, and characterization of a glycoside hydrolase family 86 $\beta$-agarase from a deep-sea Microbulbiferlike isolate. Appl. Microbiol. Biotechnol. 66: 266-275. https://doi.org/10.1007/s00253-004-1757-5
  33. Ohta Y, Nogi Y, Miyazaki M, Li Z, Hatada Y, Ito S, Horikoshi K. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable $\beta$-agarase from the novel marine isolate, JAMB-A94. Biosci. Biotechnol. Biochem. 68: 1073-1081. https://doi.org/10.1271/bbb.68.1073
  34. Park IH, Kim SH, Lee YS, Lee SC, Zhou Y, Kim CM, et al. 2009. Gene cloning, purification, and characterization of a cold-adapted lipase produced by Acinetobacter baumannii BD5. J. Microbiol. Biotechnol. 19: 128-135. https://doi.org/10.4014/jmb.0802.130
  35. Peterson TN, Brunak S, von Heijne G, NielsenH. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786. https://doi.org/10.1038/nmeth.1701
  36. Rao L, Zhao X, Pan F, Li Y, Xue Y, Ma Y, Lu JR. 2009. Solution behavior and activity of a halophilic esterase under high salt concentration. PLoS One 4: e6980. https://doi.org/10.1371/journal.pone.0006980
  37. Salameh MA, Wiegel J. 2007. Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl. Environ. Microbiol. 73: 7725-7731. https://doi.org/10.1128/AEM.01509-07
  38. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  39. Suzuki T, Nakayama T, Kurihara T, Nishino T, Esaki N. 2002. A cold-active esterase with a substrate preference for vinyl esters from a psychrotroph, Acinetobacter sp. strain no. 6: gene cloning, purification, and characterization. J. Mol. Catal. B Enzym. 16: 255-263. https://doi.org/10.1016/S1381-1177(01)00070-4
  40. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
  41. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  42. Wang BZ, Guo P, Hang BJ, Li L, He J, Li SP. 2009. Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl. Environ. Microbiol. 75: 5496-5500. https://doi.org/10.1128/AEM.01298-09
  43. Weisburg WG, Barns SM, Pelletire DA, Lane DJ. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  44. Wei Y, Schottel JL, Derewenda U, Swenson L, Patkar S, Derewenda S. 1995. A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nature 2: 218-223.
  45. Winkler UK, Stuckman M. 1979. Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 138: 663-679.
  46. Yoshida S, Mackie RI, Cann IKO. 2010. Biochemical and domain analyses of FSUAxe6B, a modular acetyl xylan esterase, identify a unique carbohydrate binding module in Fibrobacter succinogenes S85. J. Bacteriol. 192: 483-493. https://doi.org/10.1128/JB.00935-09
  47. Zhai Y, Li K, Song JL, Shi YH, Yan YC. 2012. Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. J. Hazard. Mater. 221-222: 206-212. https://doi.org/10.1016/j.jhazmat.2012.04.031

Cited by

  1. Characterization of maltotriose production by hydrolyzing of soluble starch with α-amylase from Microbulbifer thermotolerans DAU221 vol.99, pp.9, 2015, https://doi.org/10.1007/s00253-014-6186-5
  2. Isolation and Characterization of a Novel Cold-Adapted Esterase, MtEst45, from Microbulbifer thermotolerans DAU221 vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.00218
  3. Cloning, Expression, and Characterization of a Cold-Adapted Shikimate Kinase from the Psychrophilic Bacterium Colwellia psychrerythraea 34H vol.26, pp.12, 2014, https://doi.org/10.4014/jmb.1608.08049
  4. Characterization of a cold-adapted esterase and mutants from a psychotolerant Pseudomonas sp. strain : A Cold-Adapted Esterase from Glacier No. 1 Bacteria vol.64, pp.5, 2014, https://doi.org/10.1002/bab.1525
  5. Cloning, purification, and characterization of an organic solvent-tolerant chitinase, MtCh509, from Microbulbifer thermotolerans DAU221 vol.11, pp.None, 2018, https://doi.org/10.1186/s13068-018-1299-1
  6. Cloning, purification, and characterization of GH3β-glucosidase, MtBgl85, fromMicrobulbifer thermotoleransDAU221 vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.7106