DOI QR코드

DOI QR Code

Novel Anticandidal Activity of a Recombinant Lampetra japonica RGD3 Protein

  • Wu, Caiping (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University) ;
  • Lu, Li (Department of Pharmacology, Dalian Medical University) ;
  • Zheng, Yuanyuan (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University) ;
  • Liu, Xin (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University) ;
  • Xiao, Rong (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University) ;
  • Wang, Jihong (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University) ;
  • Li, Qingwei (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University)
  • Received : 2013.12.13
  • Accepted : 2014.03.29
  • Published : 2014.07.28

Abstract

Lj-RGD3, an RGD (Arg-Gly-Asp) toxin protein from the salivary gland of Lampetra japonica, exhibits antifungal activity against Candida albicans. Lj-RGD3 has three RGD motifs and shows homology to histidine-rich glycoprotein. We synthesised two mutant derivatives of Lj-RGD3: Lj-26, which lacks all three RGD motifs and contains no His residues; and Lj-112, which lacks only the three RGD motifs. We investigated the effects of the wild-type and mutated toxins on a gram-positive bacterium (Escherichia coli), a gram-negative bacterium (Staphylococcus aureus), and a fungus (C. albicans). rLj-RGD3 and its mutants exhibited antifungal but not antibacterial activity, as measured by a radial diffusion assay. The C. albicans inhibition zone induced by rLj-112 was larger than that induced by the other proteins, and its inhibitory effect on C. albicans was dose-dependent. In viable-count assays, the rLj-112 MIC was $7.7{\mu}M$, whereas the MIC of the positive control (ketoconazole) was $15{\mu}M$. Time-kill kinetics demonstrated that rLj-112 effectively killed C. albicans at $1{\times}$ and $2{\times}$ MIC within 12 and 6 h, respectively. Electron microscopy analysis showed that rLj-RGD3 and rLj-112 induced C. albicans lysis. Our results demonstrate a novel anticandidal activity for rLj-RGD3 and its mutant derivatives.

Keywords

References

  1. Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, et al. 2000. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96: 3086-3093.
  2. Brogden KA, Guthmiller JM, Salzet M, Zasloff M. 2005. The nervous system and innate immunity: the neuropeptide connection. Nat. Immunol. 6: 558-564.
  3. Ciornei CD, Egesten A, Bodelsson M. 2003. Effects of human cathelicidin antimicrobial peptide LL-37 on lipopolysaccharideinduced nitric oxide release from rat aorta in vitro. Acta Anaesthesiol. Scand. 47: 213-220. https://doi.org/10.1034/j.1399-6576.2003.00045.x
  4. Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM. 2001. Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity. J. Immunol. 167: 623-627. https://doi.org/10.4049/jimmunol.167.2.623
  5. De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, et al. 2000. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192: 1069-1074. https://doi.org/10.1084/jem.192.7.1069
  6. Elsbach P.2003. What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses. J. Clin. Investig. 111: 1643-1645. https://doi.org/10.1172/JCI18761
  7. Goumon Y, Lugardon K, Kieffer B, Lefevre JF, Van Dorsselaer A, Aunis D, Metz-Boutigue MH.1998. Characterization of antibacterial COOH-terminal proenkephalin-A-derived peptides (PEAP) in infectious fluids. Importance of enkelytin, the antibacterial PEAP209-237 secreted by stimulated chromaffin cells. J. Biol. Chem. 273: 29847-29856. https://doi.org/10.1074/jbc.273.45.29847
  8. Gorgani NN, Parish CR, Easterbrook Smith SB, Altin JG. 1997. Histidine-rich glycoprotein binds to human IgG and C1q and inhibits the formation of insoluble immune complexes. Biochemistry 36: 6653-6662. https://doi.org/10.1021/bi962573n
  9. Gorgani NN, Theofilopoulos AN. 2007. Contribution of histidine-rich glycoprotein in clearance of immune complexes and apoptoticcells: implications for ameliorating autoimmune diseases. Autoimmunity 40: 260-266. https://doi.org/10.1080/08916930701358883
  10. G usman H, L eone C , Helmerhorst EJ, Nunn M, F lora B , Troxler RF, Oppenheim FG. 2004. Human salivary glandspecific daily variations in histatln concentrations determined by a novel quantitation technique. Arch. Oral Biol. 49: 11. https://doi.org/10.1016/S0003-9969(03)00182-1
  11. Haupt H, Heimburger N.1972. Human serum proteins with high affinity for globulins. Hoppe Seylers Z. Phys-iol. Chem. 353: 1125-1132. https://doi.org/10.1515/bchm2.1972.353.2.1125
  12. Heimburger N, Haupt H, Kranz T, Baudner S. 1972. Human serum proteins with high affinity to carboxymethylcellulose. II. Physico-chemical and immunological characterization of a histidine-rich 3,8S-2-glycoprotein (CM-protein I). Hoppe Seylers Z. Physiol. Chem. 353: 1133-1140. https://doi.org/10.1515/bchm2.1972.353.2.1133
  13. Jones AL, Hulett MD, Parish CR. 2005. Histidine-rich glycoprotein: A novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol. Cell Biol. 83: 106-118. https://doi.org/10.1111/j.1440-1711.2005.01320.x
  14. Juarez JC, Guan X, Shipulina NV, Plunkett ML, Parry GC, Shaw DE, et al. 2002. Histidine-proline-rich glycoprotein has potent antiangiogenic activity mediated through the histidineproline- rich domain. Cancer Res. 62: 5344-5350.
  15. Koczulla R, Von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, et al. 2003. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Investig. 111: 1665-1672. https://doi.org/10.1172/JCI17545
  16. Kowalska K, Carr DB, Lipkowski AW. 2002. Direct antimicrobial properties of substance P. Life Sci. 71: 747-750. https://doi.org/10.1016/S0024-3205(02)01740-X
  17. Koide T, Odani S, Ono T.1982. The N-terminal sequence of human plasma histidine-rich glycoprotein homologous to antithrombin with high affinity for heparin. FEBS Lett. 141: 222-224. https://doi.org/10.1016/0014-5793(82)80052-5
  18. Leung LL, Harpel PC, Nachman RL, Rabellino EM.1983. Histidine-rich glycoprotein is present in human platelets and is released following thrombin stimulation. Blood 62: 1016-1021.
  19. Li J, Post M, Volk R, Gao Y, Li M, Metais C, et al. 2000. PR39, a peptide regulator of angiogenesis. Nat. Med. 6: 49-55. https://doi.org/10.1038/71527
  20. Lijnen HR, Hoylaerts M, Collen D.1980. Isolation and characteriza-tion of a human plasma protein with affinity for the lysine binding sites in plasminogen. Role in the regulation of fibrino-lysis and identification as histidine-rich glycoprotein. J. Biol. Chem. 255: 214-222.
  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.
  22. Mor A, Amiche M, Nicolas P. 1994. Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin. Biochemistry 33: 6642-6650. https://doi.org/10.1021/bi00187a034
  23. Okumura K, Itoh A, Isogai E, Hirose K, Hosokawa Y, Abiko Y, et al. 2004. C-terminal domain of human CAP18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells. Cancer Lett. 212: 185-194. https://doi.org/10.1016/j.canlet.2004.04.006
  24. Olsson AK, Larsson H, Dixelius J, Johansson I, Lee C, Oelling C, et al. 2004. A fragment of histidine-rich glycoprotein is a potent inhibitor of tumor vascularization. Cancer Res. 64: 599-605. https://doi.org/10.1158/0008-5472.CAN-03-1941
  25. Pal T, Abraham B, Sonnevend A, Juma P.2006. Conlon JM Brevinin-1BYa: a naturally occurring peptide from frog skin with broad-spectrum antibacterial and antifungal properties. Inter. J. Antimi-crob. Agents 27: 525-529. https://doi.org/10.1016/j.ijantimicag.2006.01.010
  26. Pollck JJ, Denepitiyal L, Mackay BJ, Iacono VJ. 1984. Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on candida albicans. Infect Immun. 44: 701-707.
  27. Raj PA, Edgerton M, Levine MJ. 1990. Salivary histatins 5: dependence of sequence,chain lenghth,and helical conformation for candidacidal activity. Biol. Chem. 265: 3898-3950.
  28. Rydengard V, Olsson AK, Morgelin M, Schmidtchen A. 2007. Histidine-rich glycoprotein exerts antibacterial activity. FEBS J. 274: 377-389. https://doi.org/10.1111/j.1742-4658.2006.05586.x
  29. Schagger H, von Jagow G.1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. https://doi.org/10.1016/0003-2697(87)90587-2
  30. Shimizu M, Shigeri Y, Tatsu Y, Yoshikawa S, Yumoto N. 1998. Enhancement of antimicrobial activity of neuropeptide Y by N-terminal truncation. Antimicrob. Agents Chemother. 42: 2745-2746.
  31. Shigekiyo T, Kanazuka M, Azuma H, Ohshima T, Kusaka K, Saito S. 1995. Congenital deficiency of histidine-rich glycoprotein: failure to identify abnormalities in routine laboratory assays of hemostatic function, immunologic function, and trace elements [See comments]. J. Lab. Clin. Med. 125: 719-723.
  32. Steiner H, Hultmark D, Engström A, Bennich H, Boman HG. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248. https://doi.org/10.1038/292246a0
  33. Territo MC, Ganz T, Selsted ME, Lehrer R. 1989. Monocytechemotactic activity of defensins from human neutrophils. J. Clin. Investig. 84: 2017-2020. https://doi.org/10.1172/JCI114394
  34. Vouldoukis I, Shai Y, Nicolas P, Mor A. 1996. Broad spectrum antibiotic activity of the skin-PYY. FEBS Lett. 380: 237-240. https://doi.org/10.1016/0014-5793(96)00050-6
  35. Wang J, Han X, Yang H, Lu L, Wu Y, Liu X, et al. 2010. A novel RGD-toxin protein, Lj-RGD3, from the buccal gland secretion of Lampetra japonica impacts diverse biological activities. Biochimie 92: 1387-1396. https://doi.org/10.1016/j.biochi.2010.07.001
  36. Yoo YC, Watanabe R, Koike Y, Mitobe M, Shimazaki K, Watanabe S, Azuma I. 1997. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: involvement of reactive oxygen species. Biochem. Biophys. Res. Commun. 237: 624-628 https://doi.org/10.1006/bbrc.1997.7199
  37. Zanetti M.2004. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukocyte Biol. 75: 39-48. https://doi.org/10.1189/jlb.0403147
  38. Zasloff M. 1987. A class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84: 5449-5453. https://doi.org/10.1073/pnas.84.15.5449
  39. Zeya HI, Spitznagel JK. 1963. Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science 142: 1085-1087. https://doi.org/10.1126/science.142.3595.1085

Cited by

  1. The Anti-Angiogenic Activity of a Cystatin F Homologue from the Buccal Glands of Lampetra morii vol.16, pp.12, 2014, https://doi.org/10.3390/md16120477
  2. A Novel Mutant of rLj-RGD3 (rLj-112) Suppressed the Proliferation and Metastasis of B16 Cells through the EGFR Signaling Pathway vol.17, pp.2, 2019, https://doi.org/10.3390/md17020075