DOI QR코드

DOI QR Code

Non-Aflatoxigenicity of Commercial Aspergillus oryzae Strains Due to Genetic Defects Compared to Aflatoxigenic Aspergillus flavus

  • Tao, Lin (Department of Food and Nutrition, College of Health Science, Korea University) ;
  • Chung, Soo Hyun (Department of Food and Nutrition, College of Health Science, Korea University)
  • Received : 2013.11.06
  • Accepted : 2014.04.18
  • Published : 2014.08.28

Abstract

Aspergillus oryzae is generally recognized as safe, but it is closely related to A. flavus in morphology and genetic characteristics. In this study, we tested the aflatoxigenicity and genetic analysis of nine commercial A. oryzae strains that were used in Korean soybean fermented products. Cultural and HPLC analyses showed that none of the commercial strains produced detectable amount of aflatoxins. According to the molecular analysis of 17 genes in the aflatoxin (AF) biosynthetic pathway, the commercial strains could be classified into three groups. The group I strains contained all the 17 AF biosynthetic genes tested in this study; the group II strains deleted nine AF biosynthetic genes and possessed eight genes, including aflG, aflI, aflK, aflL, aflM, aflO, aflP, and aflQ; the group III strains only had six AF biosynthetic genes, including aflG, aflI, aflK, aflO, aflP, and aflQ. With the reverse transcription polymerase chain reaction, the group I A. oryzae strains showed no expression of aflG, aflQ and/or aflM genes, which resulted in the lack of AF-producing ability. Group II and group III strains could not produce AF owing to the deletion of more than half of the AF biosynthetic genes. In addition, the sequence data of polyketide synthase A (pksA) of group I strains of A. oryzae showed that there were three point mutations (two silent mutations and one missense mutation) compared with aflatoxigenic A. flavus used as the positive control in this study.

Keywords

References

  1. An LH, Hu JY, Zhang ZB, Yang M. 2006. Quantitative realtime RT-PCR for determination of vitellogenin mRNA in soiuy mullet (Mugil soiuy). Anal. Bioanal. Chem. 386: 1995-2001. https://doi.org/10.1007/s00216-006-0846-y
  2. Bennett JW, Klich M. 2003. Mycotoxins. Clin. Microbiol. Rev. 16: 497-516. https://doi.org/10.1128/CMR.16.3.497-516.2003
  3. Chang PK. 2003. The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Mol. Genet. Genomics 268: 711-719.
  4. Chang PK, Abbas HK, Weaver MA, Ehrlich KC, Scharfenstein LL, Cotty PJ. 2012. Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations. Int. J. Food Microbiol. 154: 192-196. https://doi.org/10.1016/j.ijfoodmicro.2012.01.005
  5. Chang PK, Ehrlich KC. 2010. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Int. J. Food Microbiol. 138: 189-199. https://doi.org/10.1016/j.ijfoodmicro.2010.01.033
  6. Chang PK, Scharfenstein LL, Ehrlich KC, Wei QJ, Bhatnagar D, Ingber BF. 2012. Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biol. 116: 298-307. https://doi.org/10.1016/j.funbio.2011.12.003
  7. Das MK, Ehrlich KC, Cotty PJ. 2008. Use of pyrosequencing to quantify incidence of a specific Aspergillus flavus strain within complex fungal communities associated with commercial cotton crops. Phytopathology 98: 282-288. https://doi.org/10.1094/PHYTO-98-3-0282
  8. Dorner JW. 2004. Biological control of aflatoxin contamination of crops. J. Toxicol. Toxin Rev. 23: 425-450. https://doi.org/10.1081/TXR-200027877
  9. Ehrlich KC, Cotty PJ. 2004. An isolate of Aspergillus flavus used to reduce aflatoxin contamination in cottonseed has a defective polyketide synthase gene. Appl. Microbiol. Biotechnol. 65: 473-478. https://doi.org/10.1007/s00253-004-1670-y
  10. Jung YJ, Chung SH, Lee HK, Chun HS, and Hong SB. 2012 . Isolation and identification of fungi from a meju contaminated with aflatoxins. J. Microbiol. Biotechnol. 22: 1740-1748. https://doi.org/10.4014/jmb.1207.07048
  11. Kiyota T, Hamada R, Sakamoto K, Iwashita K, Yamada O, Mikami S. 2011. Aflatoxin non-productivity of Aspergillus oryzae caused by loss of function in the aflJ gene product. J. Biosci. Bioeng. 111: 512-517. https://doi.org/10.1016/j.jbiosc.2010.12.022
  12. Klich MA, Mullaney EJ. 1987. DNA restriction enzyme fragment polymorphism as a tool for rapid differentiation of Aspergillus flavus from Aspergillus oryzae. Exp. Mycol. 11: 170-175. https://doi.org/10.1016/0147-5975(87)90002-8
  13. Klich MA, Yu J, Chang PK, Mullaney EJ, Bhatnagar D,Cleveland TE. 1995. Hybridization of genes involved in aflatoxin biosynthesis to DNA of aflatoxigenic and nonaflatoxigenic aspergilli. Appl. Microbiol. Biotechnol. 44: 439-443. https://doi.org/10.1007/BF00169941
  14. Kumeda Y, Asao T. 2001. Heteroduplex panel analysis, a novel method for genetic identification of Aspergillus section Flavi strains. Appl. Environ. Microbiol. 67: 4084-4090. https://doi.org/10.1128/AEM.67.9.4084-4090.2001
  15. Kusumoto K, Nogata Y, Ohta H. 2000. Directed deletions in the aflatoxin biosynthesis gene homolog cluster of Aspergillus oryzae. Curr. Genet. 37: 104-111. https://doi.org/10.1007/s002940050016
  16. Kusumoto KI, Yabe K, Nogata Y, Ohta H. 1998. Transcript of a homolog of aflR, a regulatory gene for aflatoxin synthesis in Aspergillus parasiticus, was not detected in Aspergillus oryzae strains. FEMS Microbiol. Lett. 169: 303-307. https://doi.org/10.1111/j.1574-6968.1998.tb13333.x
  17. Lee CZ, Liou GY, Yuan GF. 2006. Comparison of the aflR gene sequences of strains in Aspergillus section Flavi. Microbiology 152: 161-170. https://doi.org/10.1099/mic.0.27618-0
  18. Meyers DM, Obrian G, Du WL, Bhatnagar D, Payne GA. 1998. Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Appl. Environ. Microbiol. 64: 3713-3717.
  19. Mishra HN, Das C. 2003. A review on biological control and metabolism of aflatoxin. Crit. Rev. Food Sci. Nutr. 43: 245-264. https://doi.org/10.1080/10408690390826518
  20. Montiel D, Dickinson MJ, Lee HA, Dyer PS, Jeenes DJ, Roberts IN, et al. 2003. Genetic differentiation of the Aspergillus section Flavi complex using AFLP fingerprints. Mycol. Res. 107: 1427-1434. https://doi.org/10.1017/S0953756203008797
  21. Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA, et al. 2006. Whole genome comparison of Aspergillus flavus and A. oryzae. Med. Mycol. 44: S9-S11. https://doi.org/10.1080/13693780600835716
  22. Ramirez-Camejo LA, Zuluaga-Montero A, Lazaro-Escudero M, Hernandez-Kendall V, Bayman P. 2012. Phylogeography of the cosmopolitan fungus Aspergillus flavus: is everything everywhere? Fungal Biol. 116: 452-463. https://doi.org/10.1016/j.funbio.2012.01.006
  23. Scheidegger KA, Payne GA. 2003. Unlocking the secrets behind secondary metabolism: a review of Aspergillus flavus from pathogenicity to functional genomics. J. Toxicol. Toxin Rev. 22: 423-459. https://doi.org/10.1081/TXR-120024100
  24. Scherm B, Palomba M, Serra D, Marcello A, Migheli Q. 2005. Detection of transcripts of the aflatoxin genes aflD, af1O, and aflP by reverse transcription-polymerase chain reaction allows differentiation of aflatoxin-producing and non-producing isolates of Aspergillus flavus and Aspergillus parasiticus. Int. J. Food Microbiol. 98: 201-210. https://doi.org/10.1016/j.ijfoodmicro.2004.06.004
  25. Shapira R, Paster N, Eyal O, Menasherov M, Mett A, Salomon R. 1996. Detection of aflatoxigenic molds in grains by PCR. Appl. Environ. Microbiol. 62: 3270-3273.
  26. Tominaga M, Lee YH, Hayashi R, Suzuki Y, Yamada O, Sakamoto K, et al. 2006. Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strains. Appl. Environ. Microbiol. 72: 484-490. https://doi.org/10.1128/AEM.72.1.484-490.2006
  27. Yu JJ, Bhatnagar D, Cleveland TE. 2004. Completed sequence of aflatoxin pathway gene cluster in Aspergillus parasiticus. FEBS Lett. 564: 126-130. https://doi.org/10.1016/S0014-5793(04)00327-8
  28. Yu JJ, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, et al. 2004. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 70: 1253-1262. https://doi.org/10.1128/AEM.70.3.1253-1262.2004

Cited by

  1. 국내에 유통되는 종국 곰팡이의 분류학적 특성 및 안전성 vol.43, pp.3, 2015, https://doi.org/10.4489/kjm.2015.43.3.149
  2. Aflatoxin B1 Detoxification by Aspergillus oryzae from Meju, a Traditional Korean Fermented Soybean Starter vol.27, pp.1, 2017, https://doi.org/10.4014/jmb.1607.07064
  3. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger , Aspergillus oryzae , and Trichoderma reesei vol.102, pp.22, 2018, https://doi.org/10.1007/s00253-018-9354-1
  4. Fathoming Aspergillus oryzae metabolomes in formulated growth matrices vol.39, pp.1, 2019, https://doi.org/10.1080/07388551.2018.1490246
  5. Tremorgenic and neurotoxic paspaline-derived indole-diterpenes: biosynthetic diversity, threats and applications vol.103, pp.4, 2014, https://doi.org/10.1007/s00253-018-09594-x
  6. Functional Genomics of Aspergillus oryzae : Strategies and Progress vol.7, pp.4, 2014, https://doi.org/10.3390/microorganisms7040103
  7. Quantitative Proteomic Analysis for High- and Low-Aflatoxin-Yield Aspergillus flavus Strains Isolated From Natural Environments vol.12, pp.None, 2014, https://doi.org/10.3389/fmicb.2021.741875