DOI QR코드

DOI QR Code

Evaluation of ${\beta}$-1,4-Endoglucanases Produced by Bacilli Isolated from Paper and Pulp Mill Effluents Irrigated Soil

  • Pandey, Sangeeta (Division of Microbiology, Indian Agricultural Research Institute) ;
  • Tiwari, Rameshwar (Division of Microbiology, Indian Agricultural Research Institute) ;
  • Singh, Surender (Division of Microbiology, Indian Agricultural Research Institute) ;
  • Nain, Lata (Division of Microbiology, Indian Agricultural Research Institute) ;
  • Saxena, Anil Kumar (Division of Microbiology, Indian Agricultural Research Institute)
  • Received : 2013.11.14
  • Accepted : 2014.04.13
  • Published : 2014.08.28

Abstract

A total of 10 cellulase-producing bacteria were isolated from soil samples irrigated with paper and pulp mill effluents. The sequencing of 16S rRNA gene revealed that all isolates belonged to different species of genus Bacillus. Among the different isolates, B. subtilis IARI-SP-1 exhibited a high degree of ${\beta}$-1,4-endoglucanase (2.5 IU/ml), ${\beta}$-1,4-exoglucanase (0.8 IU/ml), and ${\beta}$-glucosidase (0.084 IU/ml) activity, followed by B. amyloliquefaciens IARI-SP-2. CMC was found to be the best carbon source for production of endo/exoglucanase and ${\beta}$-glucosidase. The ${\beta}$-1,4-endoglucanase gene was amplified from all isolates and their deduced amino acid sequences belonged to glycosyl hydrolase family 5. Among the domains of different isolates, the catalytic domains exhibited the highest homology of 93.7%, whereas the regions of signal, leader, linker, and carbohydrate-binding domain indicated low homology (73-74%). These variations in sequence homology are significant and could contribute to the structure and function of the enzyme.

Keywords

References

  1. Aa K, Flengsrud R, Lindahl V, Tronsmo A. 1994. Characterization of production and enzyme properties of an endo-$\beta$-1,4- glucanase from Bacillus subtilis CK-2 isolated from compost soil. Antonie Van Leeuwenhoek 66: 319-326. https://doi.org/10.1007/BF00882767
  2. Beguin P, Aubert J-P. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13: 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  3. Bischoff KM, Rooney AP, Li X-L, Liu S, Hughes SR. 2006. Purification and characterization of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnol. Lett. 28: 1761-1765. https://doi.org/10.1007/s10529-006-9153-0
  4. Edwards U, Rogall T, Blöcker H, Emde M, Bottger EC. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843-7853. https://doi.org/10.1093/nar/17.19.7843
  5. Ghose TK. 1987. Measurements of cellulase activities. Pure Appl. Chem. 59: 257-268.
  6. Kim Y-K, Oh H-J, Ko YH. 2012. Comparison of nucleotide sequences of endo-B-1,4-glucanase genes from Bacillus subtilis strains. Int. J. Biotechnol. Appl. 4: 130-133. https://doi.org/10.9735/0975-2943.4.1.130-133
  7. Li W, Zhang W-W, Yang M-M, Chen Y-L. 2008. Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol. Biotechnol. 40: 195-201. https://doi.org/10.1007/s12033-008-9079-y
  8. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  9. Mawadza C, Hatti-Kaul R, Zvauya R, Mattiasson B. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83: 177. https://doi.org/10.1016/S0168-1656(00)00305-9
  10. Mezes P, Blacher R, Lampen JO. 1985. Processing of Bacillus cereus 569/H beta-lactamase I in Escherichia coli and Bacillus subtilis. J. Biol. Chem. 260: 1218-1223.
  11. Miettinen-Oinonen A, Suominen P. 2002. Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Appl. Environ. Microbiol. 68: 3956-3964. https://doi.org/10.1128/AEM.68.8.3956-3964.2002
  12. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  13. Nei M, Li W. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269. https://doi.org/10.1073/pnas.76.10.5269
  14. Nguyen NH, Maruset L, Uengwetwanit T, Mhuantong W, Harnpicharnchai P, Champreda V, et al. 2012. Identification and characterization of a cellulase-encoding gene from the buffalo rumen metagenomic library. Biosci. Biotechnol. Biochem. 76: 1075-1084. https://doi.org/10.1271/bbb.110786
  15. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572. https://doi.org/10.1128/MMBR.64.3.548-572.2000
  16. Pandey S, Singh S, Yadav AN, Nain L, Saxena AK. 2013. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci. Biotechnol. Biochem. 77: 1474-1480. https://doi.org/10.1271/bbb.130121
  17. Rabinovich M, Melnick M, Bolobova A. 2002. The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow) 67: 850-871. https://doi.org/10.1023/A:1019958419032
  18. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK. 2010. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour. Technol. 101: 8798-8806. https://doi.org/10.1016/j.biortech.2010.06.001
  19. Sadhu S, Saha P, Sen SK, Mayilraj S, Maiti TK. 2013. Production, purification and characterization of a novel thermotolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung. SpringerPlus 2: 1-10. https://doi.org/10.1186/2193-1801-2-1
  20. Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  21. Shimonaka A, Koga J, Baba Y, Nishimura T, Murashima K, Kubota H, and Kono T. 2006. Specific characteristics of family 45 endoglucanases from Mucorales in the use of textiles and laundry. Biosci. Biotechnol. Biochem. 70: 1013-1016. https://doi.org/10.1271/bbb.70.1013
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  23. Tang Z-Z, Wu Z-F, Chen H, Lai X, Han X-Y, Wu Q. 2013. Characterization of novel EGs reconstructed from Bacillus subtilis endoglucanase. Appl. Biochem. Biotechol. 169: 1764-1773. https://doi.org/10.1007/s12010-013-0111-8
  24. Tripathi BM, Kaushik R, Kumari P, Saxena AK, Arora DK. 2011. Genetic and metabolic diversity of streptomycetes in pulp and paper mill effluent treated crop fields. World J. Microbiol. Biotechnol. 27: 1603-1613. https://doi.org/10.1007/s11274-010-0614-1
  25. Wang F, Li F, Chen G, Liu W. 2009. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol. Res. 164: 650-657. https://doi.org/10.1016/j.micres.2008.12.002
  26. Wood TM, Bhat KM. 1988. Methods for measuring cellulase activities. Methods Enzymol. 160: 87-112. https://doi.org/10.1016/0076-6879(88)60109-1
  27. Yadav S, Kaushik R, Saxena AK, Arora DK. 2011. Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J. Basic Microbiol. 51: 98-106. https://doi.org/10.1002/jobm.201000098
  28. Yang D, Weng H, Wang M, Xu W, Li Y, Yang H. 2010. Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol. Biol. Rep. 37: 1923-1929. https://doi.org/10.1007/s11033-009-9635-y