DOI QR코드

DOI QR Code

Multi-information fusion based localization algorithm for Mars rover

  • Jiang, Xiuqiang (College of Astronautics, Nanjing University of Aeronautics and Astronautics) ;
  • Li, Shuang (College of Astronautics, Nanjing University of Aeronautics and Astronautics) ;
  • Tao, Ting (College of Astronautics, Nanjing University of Aeronautics and Astronautics) ;
  • Wang, Bingheng (College of Astronautics, Nanjing University of Aeronautics and Astronautics)
  • 투고 : 2014.04.13
  • 심사 : 2014.06.20
  • 발행 : 2014.10.25

초록

High-precision autonomous localization technique is essential for future Mars rovers. This paper addresses an innovative integrated localization algorithm using a multiple information fusion approach. Firstly, the output of IMU is employed to construct the two-dimensional (2-D) dynamics equation of Mars rover. Secondly, radio beacon measurement and terrain image matching are considered as external measurements and included into the navigation filter to correct the inertial basis and drift. Then, extended Kalman filtering (EKF) algorithm is designed to estimate the position state of Mars rovers and suppress the measurement noise. Finally, the localization algorithm proposed in this paper is validated by computer simulation with different parameter sets.

키워드

참고문헌

  1. Bajracharya, M., Maimone, M.W. and Helmick, D. (2008), "Autonomy for mars rovers: past, present, and future", Computer, 41(12), 44-50.
  2. Di, K., Wang, J., He, S., Wu, B., Chen, W., Li, R. and Howard, A.B. (2008), "Towards autonomous mars rover localization: Operations in 2003 MER mission and new developments for future missions", Int. Arch. Photogramm. Remote Sens., 37, 957-962.
  3. Wang, J. (2008), "Modeling and matching of landmarks for automation of Mars rover localization", Ph.D. Dissertation, The Ohio State University.
  4. Karahayit, O. (2010), "Mars exploration rover mission-rover localization and topographic mapping", Master Dissertation, The Ohio State University.
  5. Gong, W. (2013), "Potential of MSL rover localization compared with MER", Ph.D. Dissertation, The Ohio State University.
  6. Ojeda, L., Reina, G. and Borenstein, J. (2004), "Experimental results from FLEXnav: An expert rule-based dead-reckoning system for Mars rovers", Proceedings of the 2004 IEEE Aerospace Conference, March.
  7. Ali, K.S., Vanelli, C.A., Biesiadecki, J.J., Maimone, M.W., Cheng, Y., San Martin, A.M. and Alexander, J.W. (2005), "Attitude and position estimation on the Mars exploration rovers", Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics, October.
  8. Maimone, M., Johnson, A., Cheng, Y., Willson, R. and Matthies, L. (2006), Autonomous Navigation Results From the Mars Exploration Rover (MER) Mission, Springer Berlin Heidelberg.
  9. Ning, X.L., Cai, H.W., Wu, W.R., Fang, J.C. and Zhang, X.L. (2011), "INS/CNS integrated navigation method for lunar rover", Syst. Eng. Electr., 33(8), 1837-1844.
  10. Trebi-Ollennu, A., Huntsberger, T., Cheng, Y., Baumgartner, E.T., Kennedy, B. and Schenker, P. (2001), "Design and analysis of a sun sensor for planetary rover absolute heading detection", IEEE Tran. Robot. Autom., 17(6), 939-947. https://doi.org/10.1109/70.976028
  11. Li, S., Jiang, X. and Liu, Y. (2014), "High-precision Mars entry integrated navigation under large uncertainties", J. Navigation, 67, 327-342. https://doi.org/10.1017/S0373463313000738
  12. Li, R., Di, K., Matthies, L.H., Arvidson, R.E., Folkner, W.M. and Archinal, B.A. (2004), "Rover localization and landing-site mapping technology for the 2003 Mars Exploration Rover mission", Photogram. Eng. Remote Sens., 70(1), 77-90. https://doi.org/10.14358/PERS.70.1.77
  13. Se, S., Ng, H.K., Jasiobedzki, P. and Moyung, T.J. (2004), "Vision based modeling and localization for planetary exploration rovers", Proceedings of 55th International Astronautical Congress, October.
  14. Li, S., Cui, P. and Cui, H. (2007), "Vision-aided inertial navigation for pinpoint planetary landing", Aeros. Sci. Tech., 11(6), 499-506. https://doi.org/10.1016/j.ast.2007.04.006
  15. Souvannavong, F., Lemarechal, C., Rastel, L., Maurette, M. and Magellium, F. (2010), "Vision-based motion estimation for the ExoMars rover", International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Sapporo, Japan.
  16. Cheng, Y., Maimone, M. and Matthies, L. (2005), "Visual odometry on the Mars exploration rovers", Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics, October.
  17. Li, R., Di, K., Wang, J., Agarwal, S., Matthies, L., Howard, A. and Willson, R. (2005), "Incremental bundle adjustment techniques using networked overhead and ground imagery for long-range autonomous mars rover localization", Proceedings of ISAIRAS 2005 Conference, August.
  18. Di, K., Xu, F., Li, R., Matthies, L.H. and Olson, C.F. (2002), "High precision landing site mapping and rover localization by integrated bundle adjustment of MPF surface images", Int. Arch. Photogram. Remote Sens. Spatial Inform. Sci., 34(4), 733-737.
  19. Carle, P.J., Furgale, P.T., and Barfoot, T.D. (2010), "Long-range rover localization by matching LIDAR scans to orbital elevation maps", J. Field Robot., 27(3), 344-370.
  20. Li, R., He, S., Chen, Y., Tang, M., Tang, P., Di, K. and Sims, M. (2011), "MER spirit rover localization: comparison of ground image-and orbital image-based methods and science applications", J. Geophys. Res., 116, E00F16, doi:10.1029/2010JE003773.
  21. Di, K., Xu, F., Wang, J., Niu, X., Serafy, C., Zhou, F. and Matthies, L. (2005), "Surface imagery based mapping and rover localization for the 2003 Mars Exploration Rover mission", Proceeding of ASPRS 2005 Annual Conference, Baltimore, Maryland, March.
  22. Xie, L., Yang, P., Yang, T. and Li, M. (2012), "Dual-EKF-based real-time celestial navigation for lunar rover", Mathematical Problems in Engineering, 2012, Article ID 578719, doi:10.1155/2012/578719.
  23. Di, K., Liu, Z. and Yue, Z. (2011), "Mars rover localization based on feature matching between ground and orbital imagery", Photogram. Eng. Remote Sens., 77(8), 781-791. https://doi.org/10.14358/PERS.77.8.781