DOI QR코드

DOI QR Code

Hierarchical theories for a linearised stability analysis of thin-walled beams with open and closed cross-section

  • 투고 : 2013.12.09
  • 심사 : 2014.01.14
  • 발행 : 2014.07.25

초록

A linearised buckling analysis of thin-walled beams is addressed in this paper. Beam theories formulated according to a unified approach are presented. The displacement unknown variables on the cross-section of the beam are approximated via Mac Laurin's polynomials. The governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the expansion order. Classical beam theories such as Euler-Bernoulli's and Timoshenko's can be retrieved as particular cases. Slender and deep beams are investigated. Flexural, torsional and mixed buckling modes are considered. Results are assessed toward three-dimensional finite element solutions. The numerical investigations show that classical and lower-order theories are accurate for flexural buckling modes of slender beams only. When deep beams or torsional buckling modes are considered, higher-order theories are required.

키워드

참고문헌

  1. Basaglia, C., Camotim, D. and Silvestre, N. (2009), "GBT-based local, distortional and global buckling analysis of thin-walled steel frames", Thin-Wall. Struct., 47(11), 1246-1264.
  2. Beale, R. G., Godley, M. H. R. and Enjily, V. (2001), "A theoretical and experimental investigation into cold-formed channel sections in bending with the unstiffened flanges in compression", Comput. Struct., 79(26-28), 2403-2411. https://doi.org/10.1016/S0045-7949(01)00073-6
  3. Bleich, F. (1952), Buckling Strength of Metal Structures. McGray-Hill, New York, USA.
  4. Camotim, D., Basaglia, C. and Silvestre, N. (2010), "GBT buckling analysis of thin-walled steel frames: A state-of-the-art report", Thin-Wall. Struct., 48(10-11), 726-743. https://doi.org/10.1016/j.tws.2009.12.003
  5. Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Method. E., 100(3), 215-296.
  6. Carrera, E. and Brischetto, S. (2008a), "Analysis of thickness locking in classical, refined and mixed multilayered plate theories", Compos. Struct., 82(4), 549-562. https://doi.org/10.1016/j.compstruct.2007.02.002
  7. Carrera, E. and Brischetto, S. (2008b), "Analysis of thickness locking in classical, refined and mixed theories for layered shells", Compos. Struct., 85(1), 83-90. https://doi.org/10.1016/j.compstruct.2007.10.009
  8. Carrera, E. and Giunta, G. (2009a), "Hierarchical evaluation of failure parameters in composite plates", AIAA J., 47(3), 692-702. https://doi.org/10.2514/1.38585
  9. Carrera, E. and Giunta, G. (2009b), "Exact, hierarchical solutions for localised loadings in isotropic, laminated and sandwich shells", J. Press. Vess-T. ASME, 131(4), 041202. https://doi.org/10.1115/1.3141432
  10. Carrera, E. and Giunta, G. (2010), "Refined beam theories based on a unified formulation", Int. J. Appl. Mech., 2(1), 117-143. https://doi.org/10.1142/S1758825110000500
  11. Carrera, E. and Giunta, G., Nali, P., and Petrolo, M. (2010), "Refined beam elements with arbitrary cross-section geometries", Comput. Struct., 88(5-6), 283-293. https://doi.org/10.1016/j.compstruc.2009.11.002
  12. Chen, W.F. and Santathadaporn, S. (1968), Recent Developments in the Study of Column Behaviour under Biaxial Loading, Technical Report 331.1, Fritz Engineering Laboratory, Pennsylvania, USA.
  13. Cowper, G.R. (1966), "The shear co-efficient in timoshenko beam theory", J. Appl. Mech., 330 (10), 335-340.
  14. Dinis, P.B., Camotim, D. and Silvestre, N. (2006) "GBT formulation to analyse the buckling behaviour of thin-walled members with arbitrarily 'branched' open cross-sections", Thin-Wall. Struct., 44(1), 20-38. https://doi.org/10.1016/j.tws.2005.09.005
  15. Giunta, G., Biscani, F. Carrera, E. and Belouettar, S. (2011) "Analysis of thin-walled beams via a one-dimensional unified formulation", Int. J. Appl. Mech., 3(3), 407-434. https://doi.org/10.1142/S1758825111001056
  16. Goncalves, R., Dinis, P.B. and Camotim, D. (2009), "GBT formulation to analyse the first-order and buckling behaviour of thin-walled members with arbitrary cross-sections", Thin-Wall. Struct., 47(5), 583-600. https://doi.org/10.1016/j.tws.2008.09.007
  17. Goodier, J.N. (1942), "Flexural-torsional buckling of bars of open section under bending, eccentric thrust or torsional loads", Cornell University Engineering Experimental Station Bulletin, 28.
  18. Kapania, R.K. and Raciti, S. (1989a), "Recent advances in analysis of laminated beams and plates, part I: Shear effects and buckling", AIAA J., 27(7), 923-934. https://doi.org/10.2514/3.10202
  19. Kapania, R.K. and Raciti, S. (1989b), "Recent advances in analysis of laminated beams and plates, part II: Vibrations and wave propagation", AIAA J., 27(7), 935-946. https://doi.org/10.2514/3.59909
  20. Kirchhoff, G. (1850), "Uber das gleichgewicht und die bewegung einer elastishen sceibe", Journal fur die reine und angewandte Mathematik, 50, 51-88.
  21. Love, A.E.H. (1888), "The small free vibrations and deformation of a thin elastic shell", Philos. T. R. Soc. A., 179, 491-546. https://doi.org/10.1098/rsta.1888.0016
  22. Mohri, F., Azrar, L. and Potier-Ferryc, M. (2001), $Flexurala{\euro}$"torsional post-buckling analysis of thin-walledelements with open sections, Thin-Wall. Struct., 39(11), 907-938. https://doi.org/10.1016/S0263-8231(01)00038-6
  23. Murty, A.V.K. (1970), "Analysis of short beams", AIAA J., 8, 2098-2100. https://doi.org/10.2514/3.6067
  24. Nishino, F., Kasemset, C. and Lee, L. (1977) "Variational formulation of stability problems for thin-walled members", Ingenieur-Archiv, 43(1), 58-68.
  25. Paczos, P. and Wasilewicz, P. (2009), "Experimental investigations of buckling of lipped, cold-formed thin-walled beams with i-section", Thin-Wall. Struct., 47(11), 1354-1362. https://doi.org/10.1016/j.tws.2009.03.009
  26. Put, B. M., Pi, Y. L. and Tahair, N. S. (1999), "Lateral buckling tests on cold-formed channel beams", J. Struct. Eng., 125(5), 532-539. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(532)
  27. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells Theory and Analysis. CRC Press, Boca Raton, Florida, USA.
  28. Saucha, J. and Rados, J. (2001), "A critical review of Vlasov's general theory of stability on in-plane bending of thin-walled elastic beams", Meccanica, 36(2), 177-190. https://doi.org/10.1023/A:1013017709932
  29. Schardt, R. (1983), The generalized beam theory, chapter Instability and plastic collapse of steel structures (Proceedings of the M.R. Horne conference, University of Manchester), Granada Publishing, London, UK.
  30. Schardt, R. (1989), Verallgemeinerte Technische Biegetheorie, Springer, Berlin, Germany.
  31. Schardt, R. (1994), "Generalised beam theory - An adequate method for coupled stability problems", Thin-Wall. Struct., 19(2-4) 161-180. https://doi.org/10.1016/0263-8231(94)90027-2
  32. Timoshenko, S.P. (1945) "Theory of bending, torsion and buckling of thin-walled members of open cross section", J. Franklin I., 239(3), 201-219. https://doi.org/10.1016/0016-0032(45)90093-7
  33. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, New York, USA.
  34. Trahair, N.S. (1993), Flexural-Torsional Buckling of Structures, Chapman and Hall, London, UK.
  35. Vlasov, V.Z. (1959), Thin-Walled Elastic Beams, Fizmatgiz, Moscow, Russia.
  36. Wagner, H. (1929), Verdrehung und Knickung von offenen Profilen, The 25th Anniversary of the Techische Hochschule, Danzig.
  37. Wagner, H. (1936), "Torsion and buckling of open sections", Techical Memorandum No. 807, U.S.A., National Advisory Committee for Aeronautics.
  38. Zhang, L. and Tong, G. (2004), "Flexural-torsional buckling of thin-walled beam members based on shell buckling theory", Thin-Wall. Struct., 42(12), 1665-1687. https://doi.org/10.1016/j.tws.2004.05.004
  39. Zhang, L. and Tong, G. (2008), "Elastic flexural-torsional buckling of thin-walled cantilevers", Thin-Wall. Struct., 46(1), 27-37. https://doi.org/10.1016/j.tws.2007.08.011

피인용 문헌

  1. Linearized buckling analysis of isotropic and composite beam-columns by Carrera Unified Formulation and dynamic stiffness method vol.23, pp.9, 2016, https://doi.org/10.1080/15376494.2015.1121524
  2. Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature vol.171, 2017, https://doi.org/10.1016/j.compstruct.2017.03.053
  3. Torsional flexural steady state response of monosymmetric thin-walled beams under harmonic loads vol.52, pp.4, 2014, https://doi.org/10.12989/sem.2014.52.4.787
  4. Data-driven approach for a one-dimensional thin-walled beam analysis vol.231, pp.None, 2014, https://doi.org/10.1016/j.compstruc.2020.106207