DOI QR코드

DOI QR Code

Addition Effects of Sheet-like Ni Nanopowder on the Electrochemical Properties of Positive Electrode in Ni-Zn Redox Flow Battery

Ni-Zn 레독스 플로우 전지에 있어서 양극의 전기화학적 특성에 미치는 쉬트 형상의 Ni 나노분말 첨가 효과

  • Seok, Hye-Won (Electronic materials & Module Team, Koewa Institute of Ceramics Engineering and Technology) ;
  • Kim, Sei-Ki (Electronic materials & Module Team, Koewa Institute of Ceramics Engineering and Technology) ;
  • Kang, Yang-Koo (Electronic materials & Module Team, Koewa Institute of Ceramics Engineering and Technology) ;
  • Hong, Yeon-Woo (Electronic materials & Module Team, Koewa Institute of Ceramics Engineering and Technology) ;
  • Lee, Young-Jin (Electronic materials & Module Team, Koewa Institute of Ceramics Engineering and Technology) ;
  • Kim, Beom-Su (Vitzrocell) ;
  • Ju, Byeong-Kwon (Display and Nanosystem Lab., Korea University)
  • 석혜원 (한국세라믹기술원 전자소재모듈팀) ;
  • 김세기 (한국세라믹기술원 전자소재모듈팀) ;
  • 강양구 (한국세라믹기술원 전자소재모듈팀) ;
  • 홍연우 (한국세라믹기술원 전자소재모듈팀) ;
  • 이영진 (한국세라믹기술원 전자소재모듈팀) ;
  • 김범수 (비츠로셀) ;
  • 주병권 (고려대학교 디스플레이 및 나노시스템연구실)
  • Received : 2014.07.10
  • Accepted : 2014.07.30
  • Published : 2014.09.01

Abstract

3 mol% Co-added $Ni(OH)_2$ fine powders, which showed ${\beta}$-phase, as positive electrode materials have been fabricated using $NiSO_4{\cdot}6H_2O$ aqueous solution by ultrasonic spray-chemical precipitation and subsequent hydrothermal method, and sheet-like Ni nanopowder was fabricated by mechano-chemical reduction method. The addition effects of the sheet-like Ni nanopowder on the electrochemical properties of the positive electrode in Ni-Zn Redox flow battery were investigated. Impedance spectroscopy revealed that the addition of the sheet-like Ni nanopowder resulted in decrease in the electrical resistivity; 10 wt.% addition reduced the electrical properties by a fifth. Cyclic voltammetry showed the addition of the sheet-like Ni nanopowder resulted in decrease in the potential difference of oxidation and reduction; this means the increase in the reversability for electrode reduction. Charge/discharge measurement confirmed that the addition of the sheet-like Ni nanopowder resulted in the increase in the discharge efficiency.

Keywords

References

  1. S. Obara, Y. Morizane, and J. Morel, Int. J. Hydro. Energy, 38, 8888 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.036
  2. P. Alotto, M. Guarnieri, and F. Moro, Renew. Sustain. Energy. Rev., 29, 325 (2014) https://doi.org/10.1016/j.rser.2013.08.001
  3. A. Hazza, D. Pletcher, and R. Wills, Phys. Chem. Chem. Phys., 6, 1773 (2004). https://doi.org/10.1039/b401115e
  4. D. Pletcher and R. Wills, Phys. Chem. Chem. Phys., 6, 1779 (2004). https://doi.org/10.1039/b401116c
  5. D. Pletcher and R. Wills, J. Power Sources, 149, 96 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.048
  6. H. Ahmed, D. Pletcher, and R. Wills, J. Power Sources, 149, 103 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.049
  7. Q. Xu, T. S. Zhao, and C. Zhang, Appl. Energy, 130, 139 (2014). https://doi.org/10.1016/j.apenergy.2014.05.034
  8. A. Parasuraman, T. M. Lim, C. Menictas, and M. Skyllas-Kazacos, Electrochimic Acta, 101, 27 (2013). https://doi.org/10.1016/j.electacta.2012.09.067
  9. T. Herr, P. Fischer, J. Tübke, K. Pinkwart, and P. Elsner, J. Power. Sources, 265, 317 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.141
  10. Y. Zhang, Z. Zhou, and J. Yan, J. Power Sources, 75, 283 (1998). https://doi.org/10.1016/S0378-7753(98)00111-6
  11. Q. Zhang, Y. Xu, and X. Wang, Mater. Chem. Phys., 86, 293 (2004). https://doi.org/10.1016/j.matchemphys.2004.03.029
  12. M. G. Ma, J. F. Zhu, J. X. Jiang, and R. C. Sun, Mater. Lett., 63, 1791 (2009). https://doi.org/10.1016/j.matlet.2009.05.037
  13. J. W. Lang, L. B. Kong, W. J. Wu, M. L. Y. C. Luo, and L. Kang, J. Solid. State. Electrochem, 13, 333 (2009). https://doi.org/10.1007/s10008-008-0560-0
  14. Y. Tan, S. Srinivasan, and K. S. Choi, J. Am. Chem. Soc., 127, 3596 (2005). https://doi.org/10.1021/ja0434329
  15. Y. F. Yuan, X. H. Xia, J. B. Wu, J. L. Yang, Y. B. Chen, and S. Y. Guo., Electrochemical Acta, 56, 2627 (2011). https://doi.org/10.1016/j.electacta.2010.12.001
  16. W. P. Yu, X. P. Yang, L. K. Meng, and Z. Z. Liu, Trans. Mater. Heat Treat. (in Chinese), 26, 30 (2005).
  17. W. H. Zhu, J. J. Ke, H. M. Yu, and D. J. Zhang, J. Power Sources, 56, 75 (1995). https://doi.org/10.1016/0378-7753(95)80011-5
  18. L. K. Meng and W. P. Yu, Trans. Mater. Heat Treat. (in Chinese), 27, 17 (2006).
  19. J. Huang, Y. Lei, X. Wei, X. Liu, D. Cao, J. Yin, and G. Wang, J. Power Sources, 232, 370 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.081
  20. G. S. Gund, D. P. Dubal, S. S. Shinde, and C. D. Lokhande, Ceramics International (2013).
  21. J. Lang, L. Kong, W. Wu, M. Liu, Y. Luo, and L. Kang, J. Solid. State. Electrochem., 13, 333 (2009). https://doi.org/10.1007/s10008-008-0560-0
  22. I Krejci and P. Vanysek, J. Power Sources, 47, 79 (1994). https://doi.org/10.1016/0378-7753(94)80052-9