DOI QR코드

DOI QR Code

Electrodeposition에 의해 성장온도와 시간을 달리하여 성장한 ZnO 나노구조의 특성

Effects of Growth Temperature and Time on Properties of ZnO Nanostructures Grown by Electrodeposition Method

  • Park, Youngbin (Department of Nano Engineering, Inje University) ;
  • Nam, Giwoong (Department of Nano Engineering, Inje University) ;
  • Park, Seonhee (Department of Nano Engineering, Inje University) ;
  • Moon, Jiyun (Department of Nano Engineering, Inje University) ;
  • Kim, Dongwan (Department of Nano Engineering, Inje University) ;
  • Kang, Hae Ri (Department of Nano Engineering, Inje University) ;
  • Kim, Haeun (Department of Nano Engineering, Inje University) ;
  • Lee, Wookbin (Department of Nano Engineering, Inje University) ;
  • Leem, Jae-Young (Department of Nano Engineering, Inje University)
  • 투고 : 2014.07.28
  • 심사 : 2014.08.25
  • 발행 : 2014.08.30

초록

The electrodeposition of ZnO nanorods was performed on ITO glass. The optimization of two process parameters (solution temperature and growth time) has been studied in order to control the orientation, morphology, density, and growth rate of ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results of the structural property show that hexagonal ZnO nanorods with wurtzite crystal structures have a c-axis orientation, and higher intensity for the ZnO (002) diffraction peaks. Furthermore, the nanorods length increased with increasing both the solution temperature and the growth time. The results of the optical property show a strong UV (3.28 eV) peaks and a weak visible (1.9~2.4 eV) bands, the intensity of UV peaks was increased with increasing both the solution temperature and the growth time. Especially, the UV peak for growth of nanorods at $75^{\circ}C$ blue-shift than different temperatures.

키워드

참고문헌

  1. S. Fujihara, C. Sasaki, and T. Kimura, Appl. Surf. Sci., 180 (2001) 341. https://doi.org/10.1016/S0169-4332(01)00367-1
  2. M. Ohyama ; J. Am. Ceram., 81 (1998) 1622.
  3. D. Bao, H. Gu, and A. Kuang ; Thin Solid Films, 312 (1998) 37. https://doi.org/10.1016/S0040-6090(97)00302-7
  4. J. F. Chang, W. C. Lin, and M. H. Hon, Appl. Surf. Sci., 183 (2001) 18. https://doi.org/10.1016/S0169-4332(01)00541-4
  5. E. Fortunato, P. Nunes, A. Marques, D. Costa, H. Aguas, I. Ferreira, M. E. V. Costa, M. H. Godinho, P. L. Almeida, J. P. Borges, and R. Martins ; Adv. Eng. Mater., 4 (2002) 610. https://doi.org/10.1002/1527-2648(20020806)4:8<610::AID-ADEM610>3.0.CO;2-1
  6. Z. L. Wang, X. Y. Kong, and J. M. Zuo, Phys. Rev. Lett., 90 (2003) 185502. https://doi.org/10.1103/PhysRevLett.90.185502
  7. H. K. Lee, M. S. Kim, and J. S. Kim, Nanotechnology, 22 (2011) 445602. https://doi.org/10.1088/0957-4484/22/44/445602
  8. Kenry, and C. T. Lim ; Prog. Mater Sci., 58 (2013) 705. https://doi.org/10.1016/j.pmatsci.2013.01.001
  9. X. Wang, C. J. Summers, and Z. L. Wang, Nano Lett., 4 (2004) 423. https://doi.org/10.1021/nl035102c
  10. B. Pardhan, S. K. Batabyal, and A. J. Pal, Sol. Energy Mater. Sol. Cells, 91 (2007) 769. https://doi.org/10.1016/j.solmat.2007.01.006
  11. R. Konenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett., 85 (2004) 6004. https://doi.org/10.1063/1.1836873
  12. Q. X. Zhao, P. Klason, and M. Willander, Appl. Phys. A Mater. Sci. Process., 88 (2007) 27. https://doi.org/10.1007/s00339-007-3958-0
  13. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, Nathan, Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater., 12 (2002) 323. https://doi.org/10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
  14. Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett., 396 (2004) 21. https://doi.org/10.1016/j.cplett.2004.07.110
  15. W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Appl. Phys. Lett., 80 (2002) 4232. https://doi.org/10.1063/1.1482800
  16. B. Liu, and H. C. Zeng, J. Am. Chem. Soc., 125 (2003) 4430. https://doi.org/10.1021/ja0299452
  17. B. Xue, Y. Liang, L. Donglai, N. Eryong, S. Congli, f. Huanhuan, X. Jingjing, J. Yong, J. Zhifeng, and S. Xiaosong, Appl. Surf. Sci., 257 (2011) 10317. https://doi.org/10.1016/j.apsusc.2011.05.132
  18. M. Lzaki, S. Watase, and H. Takahashi, Appl. Phys. Lett., 83 (2003) 4930. https://doi.org/10.1063/1.1633677
  19. M. Tolosa, L. Damonte, H. Brine, H. Bolink, and M. Fenollosa, Nanoscale Res. Lett., 8 (2013) 135. https://doi.org/10.1186/1556-276X-8-135
  20. A. Goux, T. Pauporte, J. Chivot, and D. Lincot, Electrochim. Acta, 50 (2005) 2239. https://doi.org/10.1016/j.electacta.2004.10.007
  21. M. Guo, C. Yang, M. Zhang, Y. Zhang, T. Ma, X. Wang, and X. Wang, Electrochim. Acta, 53 (2008) 4633. https://doi.org/10.1016/j.electacta.2008.01.061
  22. L. Wu, Y. Wu, W. Lu, H. Wei, and Y. Shi, Appl. Surf. Sci., 252 (2005) 1436. https://doi.org/10.1016/j.apsusc.2005.02.117