DOI QR코드

DOI QR Code

Analytical Verification of the Standard Inclinations of Slope in the Design Criteria

설계기준에 제시된 사면 표준경사에 대한 해석적 검증

  • Lee, Seung-Hyun (Department of Civil Engineering, Sunmoon University) ;
  • Kim, Byung-Il (Department of Civil and Environmental Engineering, Myongji University)
  • 이승현 (선문대학교 토목공학과) ;
  • 김병일 (명지대학교 토목환경공학과)
  • Received : 2014.04.29
  • Accepted : 2014.08.07
  • Published : 2014.08.31

Abstract

Slope stability analyses were conducted to investigate the limitations of application of the standard inclination of slope and the effects of the berm width on the slope stability. The standard slope inclination could be applied to the basic slope sections that were considered for the analyses, whereas additional slope stability analysis should be performed for the case of considering ground water. A comparison of the factors of safety between the case of installing a berm and the case of letting the grading have an equivalent section area with the case of installing the berm, the factors of safety in the case of installing a berm were greater than those for the case of allowing grading, and the differences between the factors of safety increase with increasing berm width. For all the sections considered in the analyses, the increments of the safety factor were proportional to the width of the berm and those corresponding to the embankment slope and cut slope with a berm width of 7m were 34.5% and 48%, respectively.

설계기준에 제시되어 있는 사면 표준경사의 적용한계와 소단폭이 사면의 안정성에 미치는 영향을 살펴보고자 사면안정해석을 수행하고 그 결과를 비교분석해보았다. 해석에서 고려한 기본 성토단면 및 절토단면과 유사한 조건의 단면에 대해서는 설계기준에 제시된 표준경사를 적용하더라도 문제는 없을 것으로 보이며 지하수가 있는 상태에서는 지하수위를 고려한 별도의 사면안정해석을 수행되어야 할 것으로 판단된다. 소단을 두는 경우와 그와 동등한 해석단면적을 갖도록 경사를 완화한 경우에 대한 사면 안전율을 비교해 볼 때 소단을 두는 경우의 안전율이 경사를 완화한 경우보다 크게 계산되었으며 소단폭이 커질수록 안전율의 차이 또한 컸다. 해석에서 고려한 모든 단면에 대하여 기본 검토단면에 대한 사면안전율 증분값은 소단폭에 대체적으로 비례하는 결과를 보였는데 소단폭이 7m인 성토사면과 절토사면의 경우 안전율 증분값은 각각 34.5%와 48% 정도였다.

Keywords

References

  1. Lee W. A., Thomas S. L., Sunil Sharma, Glenn M. B. (2002) Slope stability and stabilization methods, John Wiley & Sons, Inc., pp. 38.
  2. Whitman, R. V. and Bailey, W. A. (1967) "Use of computers for slope stability analysis", ASCE Journal of the Soil Mechanics and Foundation Division, 93 (SM4).
  3. Duncan, J. M. and Wright, S. G. (1980) "The accuracy of equilibrium methods of slope stability analysis", Proceedings of the International Symposium on Landslides, New Delhi, Vol. 1, pp. 247-254. DOI: http://dx.doi.org/10.1016/0013-7952(80)90003-4
  4. Spencer, E. (1967) "A method of analysis of the stability of embankment assuming parallel inter-slice forces", Geotechnique, Vol. 17, pp. 11-26. DOI: http://dx.doi.org/10.1680/geot.1967.17.1.11
  5. Morgenstern, N. R., and V. E. Price (1965) "The analysis of the stability of general slip surfaces", Geotechnique, Vol. 15, No. 1, pp. 77-93. DOI: http://dx.doi.org/10.1680/geot.1965.15.1.79
  6. Sarma, S. K. (1973) "Stability analysis of embankments and slopes", Geotechnique, Vol. 23, No. 3, pp. 423-433. DOI: http://dx.doi.org/10.1680/geot.1973.23.3.423
  7. Fellenius, W. (1936) "Calculation of stability of earth dams", Transactions, 2nd Congress Large Dams, Vol. 4, 445pp. Washington, D.C.
  8. Bishop, A. W. (1995) "The use of the slip circle in the stability analysis of slopes" Geotechnique, Vol. 10, No. 1, pp. 129-150. DOI: http://dx.doi.org/10.1680/geot.1955.5.1.7
  9. Korea Ministry of Land, Transport and Maritime Affairs (2011) Design Criteria of Slopes for Construction
  10. Korea Expressway Corporation (2001) Road Design Method
  11. GEO-SLOPE (2002) SLOPE/W Manual, GEO-SLOPE International, Canada