DOI QR코드

DOI QR Code

Flexural Behavior of Concrete Beams Reinforced with GFRP Bars

GFRP 보강근을 사용한 콘크리트 보의 휨파괴 거동

  • Eo, Seok-Hong (Department of Civil Engineering, Changwon National University) ;
  • Ha, Sang-Hoon (Korea Rural Community Corporation)
  • Received : 2014.04.23
  • Accepted : 2014.08.07
  • Published : 2014.08.31

Abstract

This paper presents the results of flexural test of concrete beams reinforced with GFRP and conventional steel reinforcement for comparison. The beams were tested under a static load to examine the effects of the reinforcement ratio and compressive strength of concrete on cracking, deflection, ultimate capacity, and modes of failure. The test results showed that the ultimate capacity of the GFRP-reinforced beams increased with increasing reinforcement ratio and concrete strength, showing a 41.3~51.6% increase compared to steel reinforced beams. The deflections at maximum loads of the GFRP reinforced beams were 4.1~6.3 times higher that of steel reinforced beams. The measured deflections of GFRP reinforced beams decreased approximately 31% compared to the theoretical predictions because the theoretical flexural stiffness was underestimated at the maximum loads. For the GFRP-reinforced beams, the ACI code 440 design method resulted in conservative flexural strength estimates.

본 논문은 철근대체재로서 유리섬유보강 플라스틱봉(GFRP : Glass Fiber Reinforced Plastic Bar)으로 보강한 콘크리트 보 및 일반 RC보의 휨파괴 실험결과를 비교하여 제시한 것으로 보강비와 콘크리트의 압축강도를 주요 실험변수로 설정하여 보의 균열발생 양상과 파괴모우드, 처짐, 변형률 및 최대하중을 측정하고 분석하였다. 실험결과, GFRP 보강보의 하중강도는 보강비와 콘크리트 강도가 증가할수록 크게 나타났으며, 동일 보강비일 경우 일반 RC보에 비하여 41.3~51.6% 증가하였다. GFRP 보강보의 처짐은 일반 RC보에 비하여 약 4.1~6.3배 증가하는 것으로 나타났으며, 실측처짐이 이론값보다 평균 31% 정도 작게 나타나 GFRP 보의 처짐계산시 사용되는 휨강성이 최대하중시 과소평가되기 때문인 것으로 판단된다. GFRP 보의 균열폭은 RC보에 비하여 1.87~2.79배 크게 발생하였으며, 보강비와 콘그리트 강도가 증가할수록 다소 작은 것으로 나타났다. ACI code 440에 의해 산정한 설계휨강도는 대체적으로 안전측의 값을 나타내었다.

Keywords

References

  1. Han-Young Moon, Seoung-Soo Kim, and Hong-Sam Kim, "Investigation on Steel Corrosion in Domestic Concrete Structures", Journal of the Korea Concrete Institute, Vol.13, No.5, pp.58-63, 2001.
  2. Benmokrane, B., Chaallal, O., and Masmoudi, R. "Flexural Response of Concrete Beams Reinforced with GFRP Rebars," ACI Structural Journal, Vol.93, No.1, pp. 46-55, 1996.
  3. Masmoudi, R., Theriault, M., and Benmokrane, B, "Flexural Behavior of Concrete Beams Reinforced Plastic Reinforcing Rods," ACI Structural Journal, Vol.95, No.6, pp.665-676, 1998.
  4. Chae-Saeng Kim, "An Experimental Study on Structural Behavior of Concrete Members Reinforced with FRP Re-Bars", M.S. Thesis, Hanyang University, Feb. 2007.
  5. Soon-Jong Yoon, Byung-Suk Kim, Sang-Kyoon Jeong, and Jae-Ho Jung, "Flexural Behavior of GFRP Re-Bar Bundle Reinforced Concrete Beams", Journal of the Korea Concrete Institute, Vol.23, No.6, pp.1067-1075, November 2003.
  6. Jong-Sung Sim, Hong-Seob-Oh, Se-jun Oh, Won-Gi Jung, and Jun-Hyun Lim, "Study on the Deflection of Beams Reinforced with GFRP Rebar", Journal of the Korea Concrete Institute, Vol.19, No.1 pp.477-480, May 2007.
  7. ACI Committee 440, Guide for the Design and Construction of Concrete Reinforced with FRP Bars, American Concrete Institute, U.S.A., 2000.
  8. Design Manual No.3, Reinforcing Concrete Structures with Fibre Reinforced Polymers, ISIS Canada, Sep. 2001.
  9. oon-Jong Yoon, Byung-Suk Kim, Sung-Kun You, Jae-Ho Jung, and Sang-Kyoon Jeong, "Experimental Investigations on the Flexural Behavior of One-way Concrete Slabs Reinforced with GFRP Re-Bar Bundle" Journal of the Korean Society for Composite Materials, Vol.16, No.3, pp.32-40, 2003.