DOI QR코드

DOI QR Code

The Global Warming Hiatus Simulated in HadGEM2-AO Based on RCP8.5

HadGEM2-AO RCP8.5 모의에서 나타난 지구온난화 멈춤

  • Wie, Jieun (Division of Science Education/Institute of Science Education, Chonbuk National University) ;
  • Moon, Byung-Kwon (Division of Science Education/Institute of Science Education, Chonbuk National University) ;
  • Kim, Ki-Young (4D Solution Co., LTD.) ;
  • Lee, Johan (National Institute of Meteorological Research)
  • 위지은 (전북대학교 과학교육학부/융합과학연구소) ;
  • 문병권 (전북대학교 과학교육학부/융합과학연구소) ;
  • 김기영 ((주)포디솔루션) ;
  • 이조한 (국립기상연구소)
  • Received : 2014.07.08
  • Accepted : 2014.08.14
  • Published : 2014.08.31

Abstract

Despite the greenhouse gases like carbon dioxide have steadily increased in atmosphere, the overall trend of the global average surface air temperature has stalled during the last decade (2002-present). This phenomenon is often called hiatus or warming pause, which is challenging the prevailing view that anthropogenic forcing causes warming environment. Our study characterized the hiatus by analyzing the HadGEM2-AO (95 yrs) simulation data based on RCP8.5 scenario. The PC2 time series from the EOF of the zonal mean vertical ocean temperature has been defined as the index that represents the warming pause. The relationship between the hiatus, ENSO and the changes in climate system are identified by utilizing the newly defined PC2. Since the La Nina index (defined as the negative of NINO3 index) leads PC2 by about 11 months, it may be possible that the La Nina causes the warming to be interrupted. We also show that the cooling of the climate system closed tied to the heat penetration into the deep ocean, indicating the weakening the warming rate is due to the oceanic heat uptake. Finally, the global warming hiatus is characterized by the anomalous warming in Arctic region as well as the intensification of the trade wind in the equatorial Pacific.

대기 중 이산화탄소 등의 농도가 지속적으로 증가하고 있음에도 최근 10여 년 동안(2002-현재) 전지구 지표 온도는 거의 답보상태에 머물러 있다. 이처럼 온실기체 강제력에도 불구하고, 지구 온난화 경향이 사라진 듯 보이는 현상을 지구 온난화 멈춤(hiatus)이라 한다. 이 연구는 HadGEM2-AO가 모의한 RCP8.5 시나리오 실험(95년간) 자료를 분석하여, 온난화 멈춤 시기의 특징을 분석하였다. 온난화 멈춤 기간을 나타내는 시계열은 동서 평균한 연직 해수 온도 분포를 EOF 분석하여 구한 두 번째 PC (PC2)로 정의하였다. PC2를 이용하여 온난화 멈춤과 엔소와의 관련성, 기후시스템의 변화 등을 분석하였다. 라니냐 지수(NINO3지수에 -1을 곱하여 정의)가 PC2를 약 11개월 앞서는 것으로 보아 라니냐 발생이 온난화 멈춤을 유도할 수 있음을 발견하였다. 또한 기후시스템의 냉각은 해수 표층의 열이 해양 내부로 침강으로 나타남을 보였다. 이는 해양의 열흡수에 의해 전지구 온도 상승률이 약화되었음을 의미한다. 온난화 멈춤 시기에 북태평양과 북반구 극지는 양의 온도 편차가 나타났으며, 열대 해양에서는 무역풍이 강화되었다.

Keywords

References

  1. Baek, H.-J., Lee, J., Lee, H.-S., Hyun, Y.-K., Cho, C., Kwon, W.-T., Marzin, C., Gan, S.-Y., Kim, M.-J., Cho, D.-H., Lee, J., Lee, J., Boo, K.-O., Kang, H.-S., and Byun, Y.-H., 2013, Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pacific Journal of Atmospheric Science, 49, 603-618, doi:10.1007/s13143-013-0053-7.
  2. Balmaseda, M.A., Trenberth, K.E., and Kallen, E., 2013, Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters, 40, 1-6. https://doi.org/10.1029/2012GL054022
  3. Chang, E.-C. and Hong, S.-Y., 2011, Projected climate change scenario over East Asia by a regional spectral model. Journal of Korean Earth Science Society, 32, 770-783. https://doi.org/10.5467/JKESS.2011.32.7.770
  4. Chang, S.-K., Yoon, H.I., and Chung, H., 1998, Global warming and recent retreat of an ice cliff on King George Island, South Shetland Islands, West Antarctica. Journal of Korean Earth Science Society, 19, 101-106.
  5. Choi, Y.-S., 2011, How sensitive is the Earth climate to a runaway carbon dioxide? Journal of Korean Earth Science Society, 32, 239-247. https://doi.org/10.5467/JKESS.2011.32.2.239
  6. Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C.,D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S., 2011, Development and evaluation of an Earth-system model HadGEM2. Geoscientific Model Development Discussions, 4, 997-1062. https://doi.org/10.5194/gmdd-4-997-2011
  7. Easterling, D.R. and Wehner, M.F., 2009, Is the climate warming or cooling? Geophysical Research Letters, 36, L08706, doi:10.1029/2009GL037810.
  8. England, M.H., McGregor, S., Spence, P., Meehl, G.A., Timmermann, A., Cai, W., Gupta, A.S., MaPhaden, M.J., Purich, A., and Santoso, A., 2014, Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4, 222-227. https://doi.org/10.1038/nclimate2106
  9. Etheridge, D.M., Steele, L.P., Langenfelds, R.L., Francey, R.J., Barnola, J.M., and Morgan, V.I., 1996, Natural and anthropogenic changes in atmospheric $CO_2$ over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research-Atmosphere, 101, 4115-4128. https://doi.org/10.1029/95JD03410
  10. Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M., 2013, Evaluation of climate models. in climate change 2013: The physical science basis. Cambridge University Press, Cambridge, UK, 126 p.
  11. Folland, C.K., Renwick, J.A., Salinger, M.J., and Mullan, A.B., 2002, Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophysical Research Letters, 29, 211-214.
  12. Foster, G. and Rahmstorf, S., 2011, Global temperature evolution 1979-2010. Environmental Research Letters, 6, 044022, doi:10.1088/1748-9326/6/4/044022.
  13. Frohlich, C., 2012, Total solar irradiance observations. Surveys in Geophysics, 33, 453-473, doi: 10.1007/s10712-011-9168-5.
  14. Hannachi, A., Jolliffe, I.T., and Stephenson, D.B., 2007, Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 27, 1119-1152. https://doi.org/10.1002/joc.1499
  15. Hansen, J., Sato, M., Kharecha, P., and von Schuckmann, K., 2011, Earth's energy imbalance and implications. Atmospheric Chemistry and Physics, 11, 13421-13449. https://doi.org/10.5194/acp-11-13421-2011
  16. Held, I.M., 2013, The cause of the pause. Nature, 501, 318-319. https://doi.org/10.1038/501318a
  17. IPCC, 2013, Summary for policymakers. in climate change 2013: The physical science basis. Cambridge University Press, Cambridge, UK, 27 p.
  18. Johannessen, O.M., Bengtsson, L., Miles, M.W., Kuzmina, S.I., Semenov, V.A., Alekseev, G.V., Nagurnyi, A.P., Zakharov, V.F., Bobylev, L.P., Pettersson, L.H., Hasselmann, K., and Cattle, H.P., 2004, Arctic climate change: Observed and modeled temperature and sea-ice variability. Tellus, 56A, 328-341.
  19. Kaufmann, R.K., Kauppib, H., Mann, M.L., and Stock, J.H., 2011, Reconciling anthropogenic climate change with observed temperature 1998-2008. Proceedings of the National Academy of Sciences of the United States of America, 108, 11790-11793. https://doi.org/10.1073/pnas.1102467108
  20. Kosaka, Y. and Xie, S.-P., 2013, Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403-407, doi:10.1038/nature12534.
  21. Lean, J.L. and Rind, D.H., 2009, How will Earth's surface temperature change in future decades? Geophysical Research Letters, 36, L15708, doi:10.1029/2009GL038932.
  22. Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., and Francis, R.C., 1997, A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78, 1069-1079. https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
  23. Martin, G.M., Bellouin, N., Collins, W.J., Culverwell, I.D., Halloran, P.R., Hardiman, S.C., Hinton, J., Jones, C.D., McDonald, R.E., McLaren, A.J., O'Connor, F.M., Roberts, M.J., Rodriguez, J.M., Woodward, S., Best, M.J., Brooks, M.E., Brown, A.R., Butchart, N., Dearden, C., Derbyshire, S.H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J.M., Falloon, P.D., Gedney, N., Gray, L.J., Hewitt, H.T., Hobson, M., Huddleston, M.R., Hughes, J., Ineson, S., Ingram, W.J., James, P.M., Johns, T.C., Johnson, C.E., Jones, A., Jones, C.P., Joshi, M.M., Keen, A.B., Liddicoat, S., Lock, A.P., Maidens, A.V., Manners, J.C., Milton, S.F., Rae1, J.G.L., Ridley, J.K., Sellar, A., Senior, C.A., Totterdell, I.J., Verhoef, A., Vidale, P.L., and Wiltshire, A., 2011, The HadGEM2 family of Met Office Unified Model climate configurations. Geoscientific Model Development, 4, 723-757. https://doi.org/10.5194/gmd-4-723-2011
  24. Meehl, G.A., Arblaster, J.M., Fasullo, J.T., Hu, A., and Trenberth, K.E., 2011, Model-based evidence of deepocean heat uptake during surface-temperature hiatus periods. Nature Climate Change, 1, 360-364, doi:10.1038/nclimate1229.
  25. Meehl, G.A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.F.B., Stouffer, R.J., and Taylor, K.E., 2007, The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bulletin of the American Meteorological Society, 88, 1383-1394. https://doi.org/10.1175/BAMS-88-9-1383
  26. Nakicenovic, N. and Swart, R., 2000, Special report on emissions scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 612 p.
  27. Peterson, T.C., Hoerling, M.P., Stott, P.A., and Herring, S., 2013, Explaining extreme events of 2012 from a climate perspective. Bulletin of the American Meteorological Society, 94, S1-S74, doi:10.1175/Bams-D-13-00085.1.
  28. Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V., 1999, Interdecadal modulation of the impact of ENSO on Australia. Climate Dynamics, 15, 319-324. https://doi.org/10.1007/s003820050284
  29. Rahmstorf, S., 2002, Ocean circulation and climate during the past 120,000 years. Nature, 419, 207-214. https://doi.org/10.1038/nature01090
  30. Rigor, I.G., Colony, R.L., and Martin, S., 2000, Variations in surface air temperature observations in the Arctic, 1979-97. Journal of Climate, 13, 896-914. https://doi.org/10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2
  31. Solomon, S., Rosenlof, K.H., Portmann, R.W., Daniel, J.S., Davis, S.M., Sanford, T.J., and Plattner, G.-K., 2010, Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 1219-1223, doi:10.1126/science.1182488.
  32. Solomon, S., Daniel, J.S., Neely, R.R., Vernier, J.P., Dutton, E.G., and Thomason, L.W., 2011, The persistently variable 'background' stratospheric aerosol layer and global climate change. Science, 333, 866-870. https://doi.org/10.1126/science.1206027
  33. Trenberth, K.E., 2009, An imperative for climate change planning: Tracking Earth's global energy. Current Opinion in Environmental Sustainability, 1, 19-27. https://doi.org/10.1016/j.cosust.2009.06.001
  34. Trenberth, K.E. and Fasullo, J.T., 2013, An apparent hiatus in global warming? Earth's Future, 1, 19-32. https://doi.org/10.1002/2013EF000165
  35. Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., and Rose, S.K., 2011, The representative concentration pathways: An overview. Climatic Change, 109, 5-31. https://doi.org/10.1007/s10584-011-0148-z
  36. Watanabe, M., Kamae, Y., Yoshimori, M., Oka, A., Sato, M., Ishii, M., Mochizuki, T., and Kimoto, M., 2013, Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophysical Research Letters, 40, 3175-2179. https://doi.org/10.1002/grl.50541

Cited by

  1. Projection on First Flowering Date of Cherry, Peach and Pear in 21st Century Simulated by WRFv3.4 Based on RCP 4.5 and 8.5 Scenarios vol.25, pp.4, 2015, https://doi.org/10.14191/Atmos.2015.25.4.693
  2. A Mechanism of AMOC Decadal Variability in the HadGEM2-AO vol.36, pp.3, 2015, https://doi.org/10.5467/JKESS.2015.36.3.199