DOI QR코드

DOI QR Code

진동수주형 파력발전 시스템을 탑재한 압축공기 주입식 방파제의 동적거동 해석

Dynamic Response Analysis of Pressurized Air Chamber Breakwater Mounted Wave-Power Generation System Utilizing Oscillating Water Column

  • 이광호 (관동대학교 에너지자원플랜트공학과) ;
  • 김도삼 (한국해양대학교 건설공학과) ;
  • 육승민 (한국해양대학교 대학원 토목환경공학과) ;
  • 정영훈 (한국해양대학교 대학원 토목환경공학과) ;
  • 정익한 (한국해양대학교 대학원 토목환경공학과)
  • Lee, Kwang-Ho (Dept. of Energy Resources and Plant Eng., Kwandong Univ.) ;
  • Kim, Do-Sam (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Yook, Sung-Min (Dept. of Civil and Environmental Eng., Korea Maritime and Ocean Univ.) ;
  • Jung, Yeong-Hoon (Dept. of Civil and Environmental Eng., Korea Maritime and Ocean Univ.) ;
  • Jung, Ik-Han (Dept. of Civil and Environmental Eng., Korea Maritime and Ocean Univ.)
  • 투고 : 2014.07.03
  • 심사 : 2014.08.26
  • 발행 : 2014.08.30

초록

단독의 파력발전 변환장치(WEC)를 설치하는 경우 경제성이 떨어지는 문제점이 있으므로 기존 혹은 신설의 방파제에 WEC를 적용하여 파랑제어와 파랑에너지의 이용을 동시에 도모하는 방식이 많이 추진되고 있다. 본 연구는 방파제로 연구 개발된 압축공기 주입식 방파제에 진동수주형 파력발전시스템을 탑재한 경우 방파제로의 기능과 파력발전장치로의 기능을 병행하여 검토한다. WEC로써의 기능을 검토하기 위해서는 압축공기실에서 유출되어 WEC로 유입되는 압축공기 흐름속도가 정확히 평가될 필요가 있다. 따라서, 본 연구에서는 선형속도포텐셜이론에 기초한 경계요소법을, 압축공기 흐름해석에 Boyle법칙과 단열변화과정에 기초한 상태방정식을 각각 적용하여 수치시뮬레이션을 수행한다. 이로부터 얻어진 해의 타당성은 여러 형태의 구조물에 대한 기존의 수치해석결과 및 실험결과와의 비교로부터 검증되며, 실제의 수치해석에서는 진동수주형 파력발전시스템을 탑재한 고정식 및 부체식의 방파제에서 여러 파라미터들의 변화에 따른 파랑변형율, 구조물의 운동 및 공기흐름속도의 특성을 규명한다. 또한, 풍력발전시스템을 본 구조물에 복합적으로 적용할 수 있으므로 파력과 풍력을 동시에 구비한 복합발전시스템의 방파제로도 기대될 수 있다.

As the economic matters are involved, applying the WEC, which is used for controlling waves as well as utilizing the wave energy on existing breakwater, is preferred rather than installing exclusive WEC. This study examines the OWC mounted on a pressurized air chamber floating breakwater regarding the functionality of both breakwater and wave-power generation. In order to verify the performance as a WEC, the velocity of air flow from pressurized air chamber to WEC has to be evaluated properly. Therefore, numerical simulation was implemented based on BEM from linear velocity potential theory as well as Boyle's law with the state equation to analyze pressurized air flow. The validity of the obtained values can be determined by comparing the previous results from numerical analysis and empirically obtained values of different shapes. In the actual numerical analysis, properties of wave deformation around OWC system mounted on fixed type and floating type breakwaters, motions of the structure with air flow velocities are investigated. Since, the wind power generating system can be hybridized on the structure, it is expected to be applied on complex power generation system which generates both wind and wave power energy.

키워드

참고문헌

  1. Kyoung, J.H., Hong, S.Y. and Hong, D.C.(2006). Numerical analysis on wave energy absorption of OWC-type wave power generation. Journal of Ocean Engineering and Technology, 20(4), 64-69.
  2. Lee, K.H., Park, J.H., Baek, D.J., Cho, S. and Kim, D.S.(2011a). Discussion on optimal shape for wave power convertor using oscillating water column. Journal of Korean Society of Coastal and Ocean Engineers, 23(5), 345-357. https://doi.org/10.9765/KSCOE.2011.23.5.345
  3. Lee, K.H., Choi, H.S., Kim, C.H., Kim, D.S. and Cho, S.(2011b). Numerical analysis of pressurized air flow and acting wave pressure in the wave power generation system using the lowreflection structure with wall-typed curtain. Journal of Korean Society of Coastal and Ocean Engineers, 23(2), 171-181. https://doi.org/10.9765/KSCOE.2011.23.2.171
  4. Cho, I.H.(2002). Wave Energy Absorption by a Circular Cylinder Oscillating Water Column Device. Journal of Korean Society of Coastal and Ocean Engineers, 14(1), 8-18.
  5. AEA(2006). Review and analysis of ocean energy systems development and supporting policies. IEA's, Implementing Agreement on Ocean Energy Systems, 28th June.
  6. Barker, G., Vantorre, M., Banasiak, R., Beels, C. and De Rouck, J.(2007). Numerical modelling of wave energy absorption by a floating point absorber system. Proceedings of the Seventeenth International Offshore and Polar Engineering Conference, Lisbon, Portugal, July 1-6.
  7. Boccotti, P.(2007a). Comparison between a U-OWC and a conventional OWC. Ocean Engineering, 34, 799-805. https://doi.org/10.1016/j.oceaneng.2006.04.005
  8. Boccotti, P.(2007b). Caisson breakwaters embodying an OWC with a small opening - Part I : Theory. Ocean Engineering, 34, 806-819. https://doi.org/10.1016/j.oceaneng.2006.04.006
  9. CRES(2006). Ocean energy conversion in Europe, recent advancements and prospects. The Framework of the Coordinated Action on Ocean Energy.
  10. Delaure, Y.M.C. and Lewis, A.(2003). 3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods. Ocean Engineering, 30, 309-330. https://doi.org/10.1016/S0029-8018(02)00032-X
  11. EI Marjani, A., Castro Ruiz, F., Rodriguez, M.A. and Parra Santos, M.T.(2008). Numerical modelling in wave energy conversion systems. Energy, 33, 1246-1253. https://doi.org/10.1016/j.energy.2008.02.018
  12. EPRI(2005). Ocean tidal and wave energy. Renewable Energy Technical Assessment Guide-TAG-RE.
  13. Evans, D.V. and Porter, R.(1995). Hydrodynamic characteristics of an oscillating water column device. Applied Ocean Research, 17, 155-164. https://doi.org/10.1016/0141-1187(95)00008-9
  14. Evans, D.V. and Porter, R.(1997). Efficient calculation of hydrodynamic properties of OWC-type devices. J. Offshore Mech. and Article Eng., 119, 210-218. https://doi.org/10.1115/1.2829098
  15. Falcao, A.F.O.(2002). Control of an oscillating-water-column wave power plant for maximum energy production. Applied Ocean Research, 24, 73-82. https://doi.org/10.1016/S0141-1187(02)00021-4
  16. Falcao, A.F.O.(2010). Wave energy utilization : A review of the technologies. Renewable and Sustainable Energy Reviews, 14, 899-918. https://doi.org/10.1016/j.rser.2009.11.003
  17. Falcao, A.F.O. and Justino, P.A.P.(1999). OWC wave energy devices with air flow control. Ocean Engineering, 26, 1275-1295. https://doi.org/10.1016/S0029-8018(98)00075-4
  18. Falcao, A.F.O. and Rodrigues, R.J.A.(2002). Stochastic modelling of OWC wave power plant performance. Applied Ocean Research, 24, 59-71. https://doi.org/10.1016/S0141-1187(02)00022-6
  19. Falnes, J.(2007). Review a review of wave-energy extraction. Marine Structures 20, 185-201. https://doi.org/10.1016/j.marstruc.2007.09.001
  20. FEMP(2009). Ocean energy technology overview. The U.S. Department of Energy, July DOE/GO-102009-2823.
  21. Gervelas, R., Trarieux, F. and Patel, M.(2011). A time-domain simulator for an oscillating water column in irregular waves at model scale. Ocean Engineering, 38, 1-7. https://doi.org/10.1016/j.oceaneng.2010.10.016
  22. Gouaud, F., Rey, V., Piazzola, J. and Van Hooff, R.(2010). Experimental study of the hydrodynamic performance of an onshore wave power device in the presence of an underwater mound. Coastal Engineering, 57, 996-1005. https://doi.org/10.1016/j.coastaleng.2010.06.003
  23. Greenhow, M. and White, S.P.(1997). Optimal heave motion of some axisymmetric wave energy devices in sinusoidal waves. Applied Ocean Research, 19, 141-159. https://doi.org/10.1016/S0141-1187(97)00020-5
  24. Heath, T., Whittaker, T.J.T. and Boake, C.B.(2000). The design, construction and operation of the LIMPET wave energy converter( Islay, Scotland). Proceedings of 4th European Wave Energy Conference, 49-55.
  25. Hotta, H., Washio, Y., Yokozawa, H. and Miyazaki, T.(1996). R&D on wave power device "Mighty Whale". Renewable Energy, 9, 1223-1226. https://doi.org/10.1016/0960-1481(96)88497-7
  26. Ijima, T., Tabuchi, K. and Yumura, Y.(1972). Scattering of surface waves and the motions of a rectangular body by waves in finite depth. Proceedings of the JSCE, 202, 33-48 (in Japanese).
  27. Ikeno, M.(1986). Study on the characteristics of pressurized airchamber floating structure. Master's thesis, Nagoya University, Japan (in Japanese).
  28. ISSC(2006). Specialist committee V.4, ocean wind and wave energy utilization. 16th International Ship and Offshore Structures Congress, August 20th-25th, Southampton, UK, 2.
  29. Josset, C. and Clement, A.H.(2007). A time-domain numerical simulator for oscillating water column wave power plants. Renewable Energy, 32, 1379-1402. https://doi.org/10.1016/j.renene.2006.04.016
  30. Kim, D.-S. and Iwata, K.(1991). Dynamic behavior of tautly moored semisubmerged structure with pressurized airchamber and resulting wave transformation. Coastal Engineering in Japan, 34(2), 223-242.
  31. Liu, Z., Hyun, B. S. and Hong, K. Y.(2008). Application of Numerical Wave Tank to OWC Air Chamber for Wave Energy Conversion. Proceedings of the 18th International Offshore and Polar Engineering Conference, ISOPE, 350-356.
  32. Malmo, O. and Reitan, A.(1985). Wave-power absorption by an oscillating water column in a channel. J. Fluid Mech., 158, 153-175. https://doi.org/10.1017/S0022112085002592
  33. McDougal, W.G. and Sulisz, W.(1989). Seabed stability near floating structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 115(6), 727-739. https://doi.org/10.1061/(ASCE)0733-950X(1989)115:6(727)
  34. Nakamura, T. and Nakahashi, K.(2005). Effectiveness of a chamber-type water exchange breakwater and its ability of wave power extractions by wave induced vortex flows. Proceedings of Civil Engineering in the Ocean, 21, 547-552(in Japanese). https://doi.org/10.2208/prooe.21.547
  35. Paixao Conde, J.M. and Gato, L.M.C.(2008). Numerical study of the air-flow in an oscillating water column wave energy converter. Renewable Energy, 33, 2637-2644. https://doi.org/10.1016/j.renene.2008.02.028
  36. Powertech(2009). Ocean energy: Global technology development status. IEA-OES Document T0104.
  37. Ravindran, M. and Koola, P.M.(1991). Energy from sea waves-the Indian wave energy program. Current Science, 60, 676-680.
  38. Yin, Z., Shi, H. and Cao, X.(2010). Numerical simulation of water and air flow in oscillating water column air chamber. Proceedings of 20th International Offshore and Polar Engineering Conference, ISOPE, 796-801.

피인용 문헌

  1. Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column vol.29, pp.6, 2017, https://doi.org/10.9765/KSCOE.2017.29.6.305