References
- Adams, R. H., and K. Alitalo. 2007. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8: 464-478. https://doi.org/10.1038/nrm2183
- Oliver, G. 2004. Lymphatic vasculature development. Nat. Rev. Immunol. 4: 35-45. https://doi.org/10.1038/nri1258
- Oliver, G., and K. Alitalo. 2005. The lymphatic vasculature: recent progress and paradigms. Annu. Rev. Cell Dev. Biol. 21: 457-483. https://doi.org/10.1146/annurev.cellbio.21.012704.132338
- Cueni, L. N., and M. Detmar. 2006. New insights into the molecular control of the lymphatic vascular system and its role in disease. J. Iinvest. Dermatol. 126: 2167-2177. https://doi.org/10.1038/sj.jid.5700464
- Cueni, L. N., and M. Detmar. 2008. The lymphatic system in health and disease. Lymphat. Res. Biol. 6: 109-122. https://doi.org/10.1089/lrb.2008.1008
- Schulte-Merker, S., A. Sabine, and T. V. Petrova. 2011. Lymphatic vascular morphogenesis in development, physiology, and disease. J. Cell Biol. 193: 607-618. https://doi.org/10.1083/jcb.201012094
- Pflicke, H., and M. Sixt. 2009. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206: 2925-2935. https://doi.org/10.1084/jem.20091739
- Alitalo, K., T. Tammela, and T. V. Petrova. 2005. Lymphangiogenesis in development and human disease. Nature 438: 946-953.
- He, Y., I. Rajantie, K. Pajusola, M. Jeltsch, T. Holopainen, S. Yla-Herttuala, T. Harding, K. Jooss, T. Takahashi, and K. Alitalo. 2005. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 65: 4739-4746. https://doi.org/10.1158/0008-5472.CAN-04-4576
- Achen, M. G., and S. A. Stacker. 2006. Tumor lymphangiogenesis and metastatic spread-new players begin to emerge. Int. J. Cancer 119: 1755-1760. https://doi.org/10.1002/ijc.21899
-
Kataru, R. P., K. Jung, C. Jang, H. Yang, R. A. Schwendener, J. E. Baik, S. H. Han, K. Alitalo, and G. Y. Koh. 2009. Critical role of
$CD11b^+$ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113: 5650-5659. https://doi.org/10.1182/blood-2008-09-176776 - Jeltsch, M., A. Kaipainen, V. Joukov, X. Meng, M. Lakso, H. Rauvala, M. Swartz, D. Fukumura, R. K. Jain, and K. Alitalo. 1997. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276: 1423-1425. https://doi.org/10.1126/science.276.5317.1423
- Makinen, T., T. Veikkola, S. Mustjoki, T. Karpanen, B. Catimel, E. C. Nice, L. Wise, A. Mercer, H. Kowalski, D. Kerjaschki, S. A. Stacker, M. G. Achen, and K. Alitalo. 2001. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20: 4762-4773. https://doi.org/10.1093/emboj/20.17.4762
- Wirzenius, M., T. Tammela, M. Uutela, Y. He, T. Odorisio, G. Zambruno, J. A. Nagy, H. F. Dvorak, S. Yla-Herttuala, M. Shibuya, and K. Alitalo. 2007. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J. Exp. Med. 204: 1431-1440. https://doi.org/10.1084/jem.20062642
- Halin, C., H. Fahrngruber, J. G. Meingassner, G. Bold, A. Littlewood-Evans, A. Stuetz, and M. Detmar. 2008. Inhibition of chronic and acute skin inflammation by treatment with a vascular endothelial growth factor receptor tyrosine kinase inhibitor. Am. J. Pathol. 173: 265-277. https://doi.org/10.2353/ajpath.2008.071074
- Furtado, G. C., T. Marinkovic, A. P. Martin, A. Garin, B. Hoch, W. Hubner, B. K. Chen, E. Genden, M. Skobe, and S. A. Lira. 2007. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc. Natl. Acad. Sci. U. S. A. 104: 5026-5031. https://doi.org/10.1073/pnas.0606697104
- Mounzer, R. H., O. S. Svendsen, P. Baluk, C. M. Bergman, T. P. Padera, H. Wiig, R. K. Jain, D. M. McDonald, and N. H. Ruddle. 2010. Lymphotoxin-alpha contributes to lymphangiogenesis. Blood 116: 2173-2182. https://doi.org/10.1182/blood-2009-12-256065
- Choi, I., Y. S. Lee, H. K. Chung, D. Choi, T. Ecoiffier, H. N. Lee, K. E. Kim, S. Lee, E. K. Park, Y. S. Maeng, N. Y. Kim, R. D. Ladner, N. A. Petasis, C. J. Koh, L. Chen, H. J. Lenz, and Y. K. Hong. 2013. Interleukin-8 reduces post-surgical lymphedema formation by promoting lymphatic vessel regeneration. Angiogenesis 16: 29-44. https://doi.org/10.1007/s10456-012-9297-6
- Saito, Y., H. Nakagami, R. Morishita, Y. Takami, Y. Kikuchi, H. Hayashi, T. Nishikawa, K. Tamai, N. Azuma, T. Sasajima, and Y. Kaneda. 2006. Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation 114: 1177-1184. https://doi.org/10.1161/CIRCULATIONAHA.105.602953
- Platonova, N., G. Miquel, B. Regenfuss, S. Taouji, C. Cursiefen, E. Chevet, and A. Bikfalvi. 2013. Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1. Blood 121: 1229-1237. https://doi.org/10.1182/blood-2012-08-450502
- Chang, L. K., G. Garcia-Cardena, F. Farnebo, M. Fannon, E. J. Chen, C. Butterfield, M. A. Moses, R. C. Mulligan, J. Folkman, and A. Kaipainen. 2004. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc. Natl. Acad. Sci. U. S. A. 101: 11658-11663. https://doi.org/10.1073/pnas.0404272101
- Cao, R., H. Ji, N. Feng, Y. Zhang, X. Yang, P. Andersson, Y. Sun, K. Tritsaris, A. J. Hansen, S. Dissing, and Y. Cao. 2012. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc. Natl. Acad. Sci. U. S. A. 109: 15894-15899. https://doi.org/10.1073/pnas.1208324109
- Chauhan, S. K., Y. Jin, S. Goyal, H. S. Lee, T. A. Fuchsluger, H. K. Lee, and R. Dana. 2011. A novel pro-lymphangiogenic function for Th17/IL-17. Blood 118: 4630-4634. https://doi.org/10.1182/blood-2011-01-332049
- Kataru, R. P., H. Kim, C. Jang, D. K. Choi, B. I. Koh, M. Kim, S. Gollamudi, Y. K. Kim, S. H. Lee, and G. Y. Koh. 2011. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34: 96-107. https://doi.org/10.1016/j.immuni.2010.12.016
- Avraham, T., S. Daluvoy, J. Zampell, A. Yan, Y. S. Haviv, S. G. Rockson, and B. J. Mehrara. 2010. Blockade of transforming growth factor-beta1 accelerates lymphatic regeneration during wound repair. Am. J. Pathol. 177: 3202-3214. https://doi.org/10.2353/ajpath.2010.100594
- Oka, M., C. Iwata, H. I. Suzuki, K. Kiyono, Y. Morishita, T. Watabe, A. Komuro, M. R. Kano, and K. Miyazono. 2008. Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 111: 4571-4579. https://doi.org/10.1182/blood-2007-10-120337
- Lammermann, T., B. L. Bader, S. J. Monkley, T. Worbs, R. Wedlich-Soldner, K. Hirsch, M. Keller, R. Forster, D. R. Critchley, R. Fassler, and M. Sixt. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453: 51-55. https://doi.org/10.1038/nature06887
- Johnson, L. A., S. Clasper, A. P. Holt, P. F. Lalor, D. Baban, and D. G. Jackson. 2006. An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J. Exp. Med. 203: 2763-2777. https://doi.org/10.1084/jem.20051759
- Vigl, B., D. Aebischer, M. Nitschke, M. Iolyeva, T. Rothlin, O. Antsiferova, and C. Halin. 2011. Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood 118: 205-215. https://doi.org/10.1182/blood-2010-12-326447
- Forster, R., A. Braun, and T. Worbs. 2012. Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol. 33: 271-280. https://doi.org/10.1016/j.it.2012.02.007
- Issa, A., T. X. Le, A. N. Shoushtari, J. D. Shields, and M. A. Swartz. 2009. Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res. 69: 349-357. https://doi.org/10.1158/0008-5472.CAN-08-1875
- Martln-Fontecha, A., S. Sebastiani, U. E. Hopken, M. Uguccioni, M. Lipp, A. Lanzavecchia, and F. Sallusto. 2003. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198: 615-621. https://doi.org/10.1084/jem.20030448
- Kabashima, K., N. Shiraishi, K. Sugita, T. Mori, A. Onoue, M. Kobayashi, J. Sakabe, R. Yoshiki, H. Tamamura, N. Fujii, K. Inaba, and Y. Tokura. 2007. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol. 171: 1249-1257. https://doi.org/10.2353/ajpath.2007.070225
- Johnson, L. A., and D. G. Jackson. 2013. The chemokine CX3CL1 promotes trafficking of dendritic cells through in flamed lymphatics. J. Cell Sci. 126: 5259-5270. https://doi.org/10.1242/jcs.135343
- Amatschek, S., E. Kriehuber, W. Bauer, B. Reininger, P. Meraner, A. Wolpl, N. Schweifer, C. Haslinger, G. Stingl, and D. Maurer. 2007. Blood and lymphatic endothelial cell-specific differentiation programs are stringently controlled by the tissue environment. Blood 109: 4777-4785. https://doi.org/10.1182/blood-2006-10-053280
- Tripp, C. H., B. Haid, V. Flacher, M. Sixt, H. Peter, J. Farkas, R. Gschwentner, L. Sorokin, N. Romani, and P. Stoitzner. 2008. The lymph vessel network in mouse skin visualised with antibodies against the hyaluronan receptor LYVE-1. Immunobiology 213: 715-728. https://doi.org/10.1016/j.imbio.2008.07.025
- Lund, A. W., F. V. Duraes, S. Hirosue, V. R. Raghavan, C. Nembrini, S. N. Thomas, A. Issa, S. Hugues, and M. A. Swartz. 2012. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1: 191-199. https://doi.org/10.1016/j.celrep.2012.01.005
- Tewalt, E. F., J. N. Cohen, S. J. Rouhani, C. J. Guidi, H. Qiao, S. P. Fahl, M. R. Conaway, T. P. Bender, K. S. Tung, A. T. Vella, A. J. Adler, L. Chen, and V. H. Engelhard. 2012. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 120: 4772-4782. https://doi.org/10.1182/blood-2012-04-427013
- Norder, M., M. G. Gutierrez, S. Zicari, E. Cervi, A. Caruso, and C. A. Guzman. 2012. Lymph node-derived lymphatic endothelial cells express functional costimulatory molecules and impair dendritic cell-induced allogenic T-cell proliferation. FASEB J. 26: 2835-2846. https://doi.org/10.1096/fj.12-205278
- Lee, J. W., M. Epardaud, J. Sun, J. E. Becker, A. C. Cheng, A. R. Yonekura, J. K. Heath, and S. J. Turley. 2007. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8: 181-190.
- Nichols, L. A., Y. Chen, T. A. Colella, C. L. Bennett, B. E. Clausen, and V. H. Engelhard. 2007. Deletional self-tolerance to a melanocyte/melanoma antigen derived from tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric lymph nodes. J. Immunol. 179: 993-1003. https://doi.org/10.4049/jimmunol.179.2.993
- Gardner, J. M., J. J. Devoss, R. S. Friedman, D. J. Wong, Y. X. Tan, X. Zhou, K. P. Johannes, M. A. Su, H. Y. Chang, M. F. Krummel, and M. S. Anderson. 2008. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321: 843-847. https://doi.org/10.1126/science.1159407
- Cohen, J. N., C. J. Guidi, E. F. Tewalt, H. Qiao, S. J. Rouhani, A. Ruddell, A. G. Farr, K. S. Tung, and V. H. Engelhard. 2010. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207: 681-688. https://doi.org/10.1084/jem.20092465
- Fletcher, A. L., V. Lukacs-Kornek, E. D. Reynoso, S. E. Pinner, A. Bellemare-Pelletier, M. S. Curry, A. R. Collier, R. L. Boyd, and S. J. Turley. 2010. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207: 689-697. https://doi.org/10.1084/jem.20092642
- Harding, F. A., J. G. McArthur, J. A. Gross, D. H. Raulet, and J. P. Allison. 1992. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356: 607-609. https://doi.org/10.1038/356607a0
- Hawiger, D., K. Inaba, Y. Dorsett, M. Guo, K. Mahnke, M. Rivera, J. V. Ravetch, R. M. Steinman, and M. C. Nussenzweig. 2001. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194: 769-779. https://doi.org/10.1084/jem.194.6.769
- Hernandez, J., S. Aung, K. Marquardt, and L. A. Sherman. 2002. Uncoupling of proliferative potential and gain of effector function by CD8(+) T cells responding to self-antigens. J. Exp. Med. 196: 323-333. https://doi.org/10.1084/jem.20011612
-
Martin-Orozco, N., Y. H. Wang, H. Yagita, and C. Dong. 2006. Cutting Edge: Programmed death (PD) ligand-1/PD-1 interaction is required for
$CD8^+$ T cell tolerance to tissue antigens. J. Immunol. 177: 8291-8295. https://doi.org/10.4049/jimmunol.177.12.8291 - Liu, X., M. Alexiou, N. Martin-Orozco, Y. Chung, R. I. Nurieva, L. Ma, Q. Tian, G. Kollias, S. Lu, D. Graf, and C. Dong. 2009. Cutting edge: A critical role of B and T lymphocyte attenuator in peripheral T cell tolerance induction. J. Immunol. 182: 4516-4520. https://doi.org/10.4049/jimmunol.0803161
Cited by
- Update December 2014 vol.12, pp.4, 2014, https://doi.org/10.1089/lrb.2014.1242
- Promoting inflammatory lymphangiogenesis by vascular endothelial growth factor-C (VEGF-C) aggravated intestinal inflammation in mice with experimental acute colitis vol.49, pp.5, 2014, https://doi.org/10.1590/1414-431x20154738
- Challenging a Misnomer? The Role of Inflammatory Pathways in Inflammatory Breast Cancer vol.2017, pp.None, 2014, https://doi.org/10.1155/2017/4754827
- COMP-angiopoietin-1 ameliorates inflammation-induced lymphangiogenesis in dextran sulfate sodium (DSS)-induced colitis model vol.96, pp.5, 2018, https://doi.org/10.1007/s00109-018-1633-x
- Cellular and Molecular Heterogeneity Associated with Vessel Formation Processes vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/6740408
- Identification of Circular RNA Related to Inflammation-Induced Lymphangiogenesis by Microarray Analysis vol.38, pp.8, 2019, https://doi.org/10.1089/dna.2018.4590
- CXCL11-CXCR3 Axis Mediates Tumor Lymphatic Cross Talk and Inflammation-Induced Tumor, Promoting Pathways in Head and Neck Cancers vol.190, pp.4, 2014, https://doi.org/10.1016/j.ajpath.2019.12.004
- Nigella Sativa’s Anti-Inflammatory and Antioxidative Effects in Experimental Inflammation vol.9, pp.10, 2014, https://doi.org/10.3390/antiox9100921