DOI QR코드

DOI QR Code

Interplay between Inflammatory Responses and Lymphatic Vessels

  • Shin, Kihyuk (Department of Medicine, Pusan National University Hospital) ;
  • Lee, Seung-Hyo (Graduate School of Medical Science and Engineering, and Biomedical Research Center, and KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2014.06.28
  • Accepted : 2014.07.28
  • Published : 2014.08.31

Abstract

Lymphatic vessels are routes for leukocyte migration and fluid drainage. In addition to their passive roles in migration of leukocytes, increasing evidence indicates their active roles in immune regulation. Tissue inflammation rapidly induces lymphatic endothelial cell proliferation and chemokine production, thereby resulting in lymphangiogenesis. Furthermore, lymphatic endothelial cells induce T cell tolerance through various mechanisms. In this review, we focus on the current knowledge on how inflammatory cytokines affect lymphangiogenesis and the roles of lymphatic vessels in modulating immune responses.

Keywords

References

  1. Adams, R. H., and K. Alitalo. 2007. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8: 464-478. https://doi.org/10.1038/nrm2183
  2. Oliver, G. 2004. Lymphatic vasculature development. Nat. Rev. Immunol. 4: 35-45. https://doi.org/10.1038/nri1258
  3. Oliver, G., and K. Alitalo. 2005. The lymphatic vasculature: recent progress and paradigms. Annu. Rev. Cell Dev. Biol. 21: 457-483. https://doi.org/10.1146/annurev.cellbio.21.012704.132338
  4. Cueni, L. N., and M. Detmar. 2006. New insights into the molecular control of the lymphatic vascular system and its role in disease. J. Iinvest. Dermatol. 126: 2167-2177. https://doi.org/10.1038/sj.jid.5700464
  5. Cueni, L. N., and M. Detmar. 2008. The lymphatic system in health and disease. Lymphat. Res. Biol. 6: 109-122. https://doi.org/10.1089/lrb.2008.1008
  6. Schulte-Merker, S., A. Sabine, and T. V. Petrova. 2011. Lymphatic vascular morphogenesis in development, physiology, and disease. J. Cell Biol. 193: 607-618. https://doi.org/10.1083/jcb.201012094
  7. Pflicke, H., and M. Sixt. 2009. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206: 2925-2935. https://doi.org/10.1084/jem.20091739
  8. Alitalo, K., T. Tammela, and T. V. Petrova. 2005. Lymphangiogenesis in development and human disease. Nature 438: 946-953.
  9. He, Y., I. Rajantie, K. Pajusola, M. Jeltsch, T. Holopainen, S. Yla-Herttuala, T. Harding, K. Jooss, T. Takahashi, and K. Alitalo. 2005. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 65: 4739-4746. https://doi.org/10.1158/0008-5472.CAN-04-4576
  10. Achen, M. G., and S. A. Stacker. 2006. Tumor lymphangiogenesis and metastatic spread-new players begin to emerge. Int. J. Cancer 119: 1755-1760. https://doi.org/10.1002/ijc.21899
  11. Kataru, R. P., K. Jung, C. Jang, H. Yang, R. A. Schwendener, J. E. Baik, S. H. Han, K. Alitalo, and G. Y. Koh. 2009. Critical role of $CD11b^+$ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113: 5650-5659. https://doi.org/10.1182/blood-2008-09-176776
  12. Jeltsch, M., A. Kaipainen, V. Joukov, X. Meng, M. Lakso, H. Rauvala, M. Swartz, D. Fukumura, R. K. Jain, and K. Alitalo. 1997. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276: 1423-1425. https://doi.org/10.1126/science.276.5317.1423
  13. Makinen, T., T. Veikkola, S. Mustjoki, T. Karpanen, B. Catimel, E. C. Nice, L. Wise, A. Mercer, H. Kowalski, D. Kerjaschki, S. A. Stacker, M. G. Achen, and K. Alitalo. 2001. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20: 4762-4773. https://doi.org/10.1093/emboj/20.17.4762
  14. Wirzenius, M., T. Tammela, M. Uutela, Y. He, T. Odorisio, G. Zambruno, J. A. Nagy, H. F. Dvorak, S. Yla-Herttuala, M. Shibuya, and K. Alitalo. 2007. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J. Exp. Med. 204: 1431-1440. https://doi.org/10.1084/jem.20062642
  15. Halin, C., H. Fahrngruber, J. G. Meingassner, G. Bold, A. Littlewood-Evans, A. Stuetz, and M. Detmar. 2008. Inhibition of chronic and acute skin inflammation by treatment with a vascular endothelial growth factor receptor tyrosine kinase inhibitor. Am. J. Pathol. 173: 265-277. https://doi.org/10.2353/ajpath.2008.071074
  16. Furtado, G. C., T. Marinkovic, A. P. Martin, A. Garin, B. Hoch, W. Hubner, B. K. Chen, E. Genden, M. Skobe, and S. A. Lira. 2007. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc. Natl. Acad. Sci. U. S. A. 104: 5026-5031. https://doi.org/10.1073/pnas.0606697104
  17. Mounzer, R. H., O. S. Svendsen, P. Baluk, C. M. Bergman, T. P. Padera, H. Wiig, R. K. Jain, D. M. McDonald, and N. H. Ruddle. 2010. Lymphotoxin-alpha contributes to lymphangiogenesis. Blood 116: 2173-2182. https://doi.org/10.1182/blood-2009-12-256065
  18. Choi, I., Y. S. Lee, H. K. Chung, D. Choi, T. Ecoiffier, H. N. Lee, K. E. Kim, S. Lee, E. K. Park, Y. S. Maeng, N. Y. Kim, R. D. Ladner, N. A. Petasis, C. J. Koh, L. Chen, H. J. Lenz, and Y. K. Hong. 2013. Interleukin-8 reduces post-surgical lymphedema formation by promoting lymphatic vessel regeneration. Angiogenesis 16: 29-44. https://doi.org/10.1007/s10456-012-9297-6
  19. Saito, Y., H. Nakagami, R. Morishita, Y. Takami, Y. Kikuchi, H. Hayashi, T. Nishikawa, K. Tamai, N. Azuma, T. Sasajima, and Y. Kaneda. 2006. Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation 114: 1177-1184. https://doi.org/10.1161/CIRCULATIONAHA.105.602953
  20. Platonova, N., G. Miquel, B. Regenfuss, S. Taouji, C. Cursiefen, E. Chevet, and A. Bikfalvi. 2013. Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1. Blood 121: 1229-1237. https://doi.org/10.1182/blood-2012-08-450502
  21. Chang, L. K., G. Garcia-Cardena, F. Farnebo, M. Fannon, E. J. Chen, C. Butterfield, M. A. Moses, R. C. Mulligan, J. Folkman, and A. Kaipainen. 2004. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc. Natl. Acad. Sci. U. S. A. 101: 11658-11663. https://doi.org/10.1073/pnas.0404272101
  22. Cao, R., H. Ji, N. Feng, Y. Zhang, X. Yang, P. Andersson, Y. Sun, K. Tritsaris, A. J. Hansen, S. Dissing, and Y. Cao. 2012. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc. Natl. Acad. Sci. U. S. A. 109: 15894-15899. https://doi.org/10.1073/pnas.1208324109
  23. Chauhan, S. K., Y. Jin, S. Goyal, H. S. Lee, T. A. Fuchsluger, H. K. Lee, and R. Dana. 2011. A novel pro-lymphangiogenic function for Th17/IL-17. Blood 118: 4630-4634. https://doi.org/10.1182/blood-2011-01-332049
  24. Kataru, R. P., H. Kim, C. Jang, D. K. Choi, B. I. Koh, M. Kim, S. Gollamudi, Y. K. Kim, S. H. Lee, and G. Y. Koh. 2011. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34: 96-107. https://doi.org/10.1016/j.immuni.2010.12.016
  25. Avraham, T., S. Daluvoy, J. Zampell, A. Yan, Y. S. Haviv, S. G. Rockson, and B. J. Mehrara. 2010. Blockade of transforming growth factor-beta1 accelerates lymphatic regeneration during wound repair. Am. J. Pathol. 177: 3202-3214. https://doi.org/10.2353/ajpath.2010.100594
  26. Oka, M., C. Iwata, H. I. Suzuki, K. Kiyono, Y. Morishita, T. Watabe, A. Komuro, M. R. Kano, and K. Miyazono. 2008. Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 111: 4571-4579. https://doi.org/10.1182/blood-2007-10-120337
  27. Lammermann, T., B. L. Bader, S. J. Monkley, T. Worbs, R. Wedlich-Soldner, K. Hirsch, M. Keller, R. Forster, D. R. Critchley, R. Fassler, and M. Sixt. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453: 51-55. https://doi.org/10.1038/nature06887
  28. Johnson, L. A., S. Clasper, A. P. Holt, P. F. Lalor, D. Baban, and D. G. Jackson. 2006. An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J. Exp. Med. 203: 2763-2777. https://doi.org/10.1084/jem.20051759
  29. Vigl, B., D. Aebischer, M. Nitschke, M. Iolyeva, T. Rothlin, O. Antsiferova, and C. Halin. 2011. Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood 118: 205-215. https://doi.org/10.1182/blood-2010-12-326447
  30. Forster, R., A. Braun, and T. Worbs. 2012. Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol. 33: 271-280. https://doi.org/10.1016/j.it.2012.02.007
  31. Issa, A., T. X. Le, A. N. Shoushtari, J. D. Shields, and M. A. Swartz. 2009. Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res. 69: 349-357. https://doi.org/10.1158/0008-5472.CAN-08-1875
  32. Martln-Fontecha, A., S. Sebastiani, U. E. Hopken, M. Uguccioni, M. Lipp, A. Lanzavecchia, and F. Sallusto. 2003. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198: 615-621. https://doi.org/10.1084/jem.20030448
  33. Kabashima, K., N. Shiraishi, K. Sugita, T. Mori, A. Onoue, M. Kobayashi, J. Sakabe, R. Yoshiki, H. Tamamura, N. Fujii, K. Inaba, and Y. Tokura. 2007. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol. 171: 1249-1257. https://doi.org/10.2353/ajpath.2007.070225
  34. Johnson, L. A., and D. G. Jackson. 2013. The chemokine CX3CL1 promotes trafficking of dendritic cells through in flamed lymphatics. J. Cell Sci. 126: 5259-5270. https://doi.org/10.1242/jcs.135343
  35. Amatschek, S., E. Kriehuber, W. Bauer, B. Reininger, P. Meraner, A. Wolpl, N. Schweifer, C. Haslinger, G. Stingl, and D. Maurer. 2007. Blood and lymphatic endothelial cell-specific differentiation programs are stringently controlled by the tissue environment. Blood 109: 4777-4785. https://doi.org/10.1182/blood-2006-10-053280
  36. Tripp, C. H., B. Haid, V. Flacher, M. Sixt, H. Peter, J. Farkas, R. Gschwentner, L. Sorokin, N. Romani, and P. Stoitzner. 2008. The lymph vessel network in mouse skin visualised with antibodies against the hyaluronan receptor LYVE-1. Immunobiology 213: 715-728. https://doi.org/10.1016/j.imbio.2008.07.025
  37. Lund, A. W., F. V. Duraes, S. Hirosue, V. R. Raghavan, C. Nembrini, S. N. Thomas, A. Issa, S. Hugues, and M. A. Swartz. 2012. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1: 191-199. https://doi.org/10.1016/j.celrep.2012.01.005
  38. Tewalt, E. F., J. N. Cohen, S. J. Rouhani, C. J. Guidi, H. Qiao, S. P. Fahl, M. R. Conaway, T. P. Bender, K. S. Tung, A. T. Vella, A. J. Adler, L. Chen, and V. H. Engelhard. 2012. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 120: 4772-4782. https://doi.org/10.1182/blood-2012-04-427013
  39. Norder, M., M. G. Gutierrez, S. Zicari, E. Cervi, A. Caruso, and C. A. Guzman. 2012. Lymph node-derived lymphatic endothelial cells express functional costimulatory molecules and impair dendritic cell-induced allogenic T-cell proliferation. FASEB J. 26: 2835-2846. https://doi.org/10.1096/fj.12-205278
  40. Lee, J. W., M. Epardaud, J. Sun, J. E. Becker, A. C. Cheng, A. R. Yonekura, J. K. Heath, and S. J. Turley. 2007. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8: 181-190.
  41. Nichols, L. A., Y. Chen, T. A. Colella, C. L. Bennett, B. E. Clausen, and V. H. Engelhard. 2007. Deletional self-tolerance to a melanocyte/melanoma antigen derived from tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric lymph nodes. J. Immunol. 179: 993-1003. https://doi.org/10.4049/jimmunol.179.2.993
  42. Gardner, J. M., J. J. Devoss, R. S. Friedman, D. J. Wong, Y. X. Tan, X. Zhou, K. P. Johannes, M. A. Su, H. Y. Chang, M. F. Krummel, and M. S. Anderson. 2008. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321: 843-847. https://doi.org/10.1126/science.1159407
  43. Cohen, J. N., C. J. Guidi, E. F. Tewalt, H. Qiao, S. J. Rouhani, A. Ruddell, A. G. Farr, K. S. Tung, and V. H. Engelhard. 2010. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207: 681-688. https://doi.org/10.1084/jem.20092465
  44. Fletcher, A. L., V. Lukacs-Kornek, E. D. Reynoso, S. E. Pinner, A. Bellemare-Pelletier, M. S. Curry, A. R. Collier, R. L. Boyd, and S. J. Turley. 2010. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207: 689-697. https://doi.org/10.1084/jem.20092642
  45. Harding, F. A., J. G. McArthur, J. A. Gross, D. H. Raulet, and J. P. Allison. 1992. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356: 607-609. https://doi.org/10.1038/356607a0
  46. Hawiger, D., K. Inaba, Y. Dorsett, M. Guo, K. Mahnke, M. Rivera, J. V. Ravetch, R. M. Steinman, and M. C. Nussenzweig. 2001. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194: 769-779. https://doi.org/10.1084/jem.194.6.769
  47. Hernandez, J., S. Aung, K. Marquardt, and L. A. Sherman. 2002. Uncoupling of proliferative potential and gain of effector function by CD8(+) T cells responding to self-antigens. J. Exp. Med. 196: 323-333. https://doi.org/10.1084/jem.20011612
  48. Martin-Orozco, N., Y. H. Wang, H. Yagita, and C. Dong. 2006. Cutting Edge: Programmed death (PD) ligand-1/PD-1 interaction is required for $CD8^+$ T cell tolerance to tissue antigens. J. Immunol. 177: 8291-8295. https://doi.org/10.4049/jimmunol.177.12.8291
  49. Liu, X., M. Alexiou, N. Martin-Orozco, Y. Chung, R. I. Nurieva, L. Ma, Q. Tian, G. Kollias, S. Lu, D. Graf, and C. Dong. 2009. Cutting edge: A critical role of B and T lymphocyte attenuator in peripheral T cell tolerance induction. J. Immunol. 182: 4516-4520. https://doi.org/10.4049/jimmunol.0803161

Cited by

  1. Update December 2014 vol.12, pp.4, 2014, https://doi.org/10.1089/lrb.2014.1242
  2. Promoting inflammatory lymphangiogenesis by vascular endothelial growth factor-C (VEGF-C) aggravated intestinal inflammation in mice with experimental acute colitis vol.49, pp.5, 2014, https://doi.org/10.1590/1414-431x20154738
  3. Challenging a Misnomer? The Role of Inflammatory Pathways in Inflammatory Breast Cancer vol.2017, pp.None, 2014, https://doi.org/10.1155/2017/4754827
  4. COMP-angiopoietin-1 ameliorates inflammation-induced lymphangiogenesis in dextran sulfate sodium (DSS)-induced colitis model vol.96, pp.5, 2018, https://doi.org/10.1007/s00109-018-1633-x
  5. Cellular and Molecular Heterogeneity Associated with Vessel Formation Processes vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/6740408
  6. Identification of Circular RNA Related to Inflammation-Induced Lymphangiogenesis by Microarray Analysis vol.38, pp.8, 2019, https://doi.org/10.1089/dna.2018.4590
  7. CXCL11-CXCR3 Axis Mediates Tumor Lymphatic Cross Talk and Inflammation-Induced Tumor, Promoting Pathways in Head and Neck Cancers vol.190, pp.4, 2014, https://doi.org/10.1016/j.ajpath.2019.12.004
  8. Nigella Sativa’s Anti-Inflammatory and Antioxidative Effects in Experimental Inflammation vol.9, pp.10, 2014, https://doi.org/10.3390/antiox9100921