Analysis of Free Amino Acids and Polyphenol Compounds from Lycopene Variety of Cherry Tomatoes

방울토마토 라이코펜 품종의 유리아미노산 및 폴리페놀 화합물의 분석

  • Kim, Hyen-Ryung (Dept. of Food Service & Culinary Arts, Seowon University) ;
  • Ahn, Jun-Bae (Dept. of Food Service & Culinary Arts, Seowon University)
  • 김현룡 (서원대학교 호텔외식조리학과) ;
  • 안준배 (서원대학교 호텔외식조리학과)
  • Received : 2014.03.24
  • Accepted : 2014.06.10
  • Published : 2014.06.30

Abstract

In order to elucidate the usefulness of Lycopene, a cherry tomato variety, as a food material, the compositions of free amino acids, amino acid metabolites and polyphenol compounds were analyzed using HPLC and LC-MS/MS method. Lycopene contained eighteen free amino acids except for L-Cys and L-Try. L-Glu was the most abundant free amino acid, followed by L-Gln and L-Asp. The percentages of L-Glu, L-Gln and L-Asp of total free amino acid were 55.5%, 15.9% and 9.9% respectively. Lycopene contained essential amino acids with the exception of tryptophan. The following amino acid metabolites were found : ${\gamma}$-aminobutyric acid(GABA), carnitine(L-Car), o-phosphoethanolamine(o-Pea), hydroxylysine(Hyl) phosphoserine (p-Ser), N-methyl-histidine(Me-His), ethanolamine($EtNH_2$). Especially, GABA known as a neurotransmitter was present at a high level(305.99 mg/100 g dry weight). We identified the following polyphenol compounds in the cherry tomatoes : caffeic acid-hexose isomer I (CH I), caffeic acid-hexose isomer II (CH II), 3-caffeoylquinic acid(3-CQA), 5-caffeoylquinic acid(5-CQA), caffeoylquinic acid isomer(CQAI), quercetin-hexose-deoxyhexose-pentose(QTS), quercetin-3-rutinoside(Q-3-R), di-caffeoylquinic acid(di-CQA), tri-caffeoylquinic acid(tri-CQA), naringenin chalcone(NGC). Large quantities of Q-3-R and NGC known as bioactive compounds were found. These results revealed that Lycopene variety contained various nutritional and bioactive compounds and would be a potent functional food material.

본 연구에서는 방울토마토 라이코펜 품종의 식품학적 유용성을 알아보기 위해 유리아미노산, 아미노산 대사물질 및 폴리페놀 화합물의 조성을 분석하였다. 방울토마토 라이코펜 품종은 L-Cys과 L-Try을 제외한 18종의 유리아미노산을 함유하고 있었다. 방울토마토 라이코펜 품종의 유리아미노산 중 L-Glu이 건조 중량 100 g 당 2,499.02 mg이 함유되어 전체 아미노산 중 55.5%를 차지하고 있어 유리아미노산 중 가장 많은 함유량을 보였다. 그리고 L-Gln이 전체 아미노산 중 15.9%, L-Asp가 9.9% 함유되어 있어 L-Glu, L-Gln 및 L-Asp가 전체 아미노산 함량의 81% 이상을 차지하는 주요 구성 아미노산임을 알 수 있었다. 또한, 트립토판을 제외한 히스티딘, 이소류신, 류신, 라이신, 메티오닌, 페닐알라닌, 트레오닌 및 발린 등 필수아미노산이 고루 함유되어 있어 영양적인 측면에서 좋은 식품소재로 판단된다. 라이코펜 품종은 ${\gamma}$-aminobutyric acid(GABA), carnitine(L-Car), o-phosphoethanolamine(o-Pea), hydroxylysine(Hyl) phosphoserine(p-Ser), N-methyl-histidine(Me-His), ethanolamine($EtNH_2$) 등 아미노산 대사물질을 함유하고 있었으며 이 중 GABA가 건조 중량 100 g 당 305.99 mg으로 유리아미노산 대사물질 중 가장 많이 함유되어 있었다. LC/MS/MS 분석을 통해 라이코펜 품종으로부터 caffeic acid-hexose isomer I (CH I), caffeic acid-hexose isomer II (CHII), 3-caffeoylquinic acid(3-CQA), 5-caffeoylquinic acid(5-CQA), caffeoylquinic acid isomer(CQAI), quercetin-hexose-deoxyhexose-pentose(QTS), quercetin-3-rutinoside(Q-3-R), di-caffeoylquinic acid(di-CQA), tri-caffeoylquinic acid(tri-CQA), naringenin chalcone(NGC) 등 10종의 폴리페놀 화합물을 확인하였다. 특히, 항알러지효과, 2형 당뇨 억제 및 비만억제효과를 보이는 NGC이 건조 중량 100 g 당 67.6 mg으로 가장 많이 함유되어 있었고 Q-3-R이 50.9 mg으로 다량 함유되어 있었다. 결과적으로 방울토마토 라이코펜 품종은 18종의 유리아미노산과 트립토판을 제외한 8종의 필수아미노산이 고루 함유되어 있고 GABA, NGC, Q-3-R 등 생리활성 물질이 다량 함유되어 있어 영양이나 건강 측면에서 매우 유용한 식품 소재라 할 수 있다.

Keywords

References

  1. Ana P, Franz B, ZZeljan M, Ana M, Biljana N. Nikola K (2009). Identification and quantification of flavonoids and phenolic acids in burr parsley (Caucalis platycarpos L.), using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Molecules 14(7):2466-2490. https://doi.org/10.3390/molecules14072466
  2. Boggio SB, Palatnik JF, Heldt HW, Valle EM (2000). Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill. Plant Sci 159(1):125-133. https://doi.org/10.1016/S0168-9452(00)00342-3
  3. Chang JS, Lee BS, Kim YG (1992). Changes in ${\gamma}$-aminobutyric acid(GABA) and the main constituents by a treatment conditions and of anaerobically treated green tea leaves. Korean J Food Sci Technol 24(4):315-319.
  4. Choi SH, Kim HY, Kim HJ, Lee IS, Kozukue N, Levin CE, Friedman M (2011a). Free amino acid and phenolic comtents and antioxidative and cancer cell- inhibiting activities of extracts of 11 greenhouse-grown tomato varieties and 13 tomato-based foods. J Agric Food Chem 59(24):12801-12814. https://doi.org/10.1021/jf202791j
  5. Choi SH, Ahn JB, Kozukue N, Levin CE, Friedman M (2011b). Distribution of free amino acids, flavonoids, total phenolics, and antioxidative activities of jujube(Ziziphus jujuba) fruits and seeds harvested from plants grown in Korea. J Agric Food Chem 59(12):6594-6604. https://doi.org/10.1021/jf200371r
  6. Choi SH, Kim DH, Kim DS (2011c) Comparison of ascorbic acid, lycopene, ${\beta}$-carotene and ${\alpha}$-carotene contents in processed tomato products, tomato cultivar and part. Korean J Culinary Res 17(4):263-272.
  7. Choi SH, Lee SH, Kim HJ, Lee IS, Nobuyuki K, Levin CE, Friedman M (2010). Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J Agric Food Chem 58(13): 7547-7556. https://doi.org/10.1021/jf100162j
  8. Clifford MN, Hohnston KL, Knight S, Kuhnert N (2003). Hierarchical scheme for LC-MSn identification of chlorogenic acids. J Agric Food Chem 51(10):2900-2911. https://doi.org/10.1021/jf026187q
  9. Clifford MN, Knight S, Kuhnert N (2005). Discriminating between the six isomer of dicaffeoylquinic acid by LC-MSn . J Agric Food Chem 53(10):3821-3832. https://doi.org/10.1021/jf050046h
  10. Davies JN, Hobson GE (1981). Constituents of tomato fruit - the influence of environment, nutrition, and genotype. CRC Crit Rev Food Sci Nutr 15(3):205-280. https://doi.org/10.1080/10408398109527317
  11. Edward G (1999). Tomatoes, tomato-based products, lycopene and cancer. J National Cancer Institue 91(4):317-331. https://doi.org/10.1093/jnci/91.4.317
  12. Edward G, Eric BR, Yan L, Meir JS, Walter CW (2002). A prospective study of tomato products, lycopene and prostate cancer risk. J National Cancer Institue 94(5):391-398. https://doi.org/10.1093/jnci/94.5.391
  13. Fabrea N, Rustana I, de Hoffmannb E, Quetin-Leclercqc E (2001). Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Am Soc Mass Spectrom 12(6):707-715. https://doi.org/10.1016/S1044-0305(01)00226-4
  14. Friedman M (2002). Tomato glycoalkaloids : role in the plant and in the diet. J Agric Food Chem 50(21):5751-5780. https://doi.org/10.1021/jf020560c
  15. Friedman M, Levin CE (2008). Review of methods for the reduction of dietary content and toxicity of acrylamide. J Agric Food Chem 56(15):6113-6140. https://doi.org/10.1021/jf0730486
  16. Frusciante L, Carli P, Ercolano MR, Pernice R, Di Matteo A, Fogliano V, Pellegrini N (2007). Antioxidant nutritional quality of tomato. Mol Nutr Food Res 51(5):609-617. https://doi.org/10.1002/mnfr.200600158
  17. Hirai S, Kim YI, Goto T, Kang MS, Yoshimura M, Obata A, Yu R, Kawada T (2007). Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci 81(16):1272-1279. https://doi.org/10.1016/j.lfs.2007.09.001
  18. Horiba T, Nishimura I, Nakai Y, Abe K, Sato R (2010). Naringenin chalcone improves adipocyte functions by enhancing adiponectin production. Mol Cellular Endocrinol 323(2):208-214. https://doi.org/10.1016/j.mce.2010.03.020
  19. Iwamura C, Shindoda K, Yoshimura M, Watanabe Y, Obata A, Nakayama T (2010). Naringenin chalcone suppresses allergic asthma by inhibitiong the Type-2 function of CD4 T cells. Allergol Int 59(1):67-73. https://doi.org/10.2332/allergolint.09-OA-0118
  20. Jung CH, Cho CH, Kim CJ (2007). Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Arch. Pharmacal Research 30(12): 1599-1607. https://doi.org/10.1007/BF02977330
  21. Kim SJ, Kim JY, Chang YE (2012). Physiological activites of saccharified cherry tomato gruel containing different levels of cherry tomato puree. Korean J Food Cookery Sci 28(6):773-779. https://doi.org/10.9724/kfcs.2012.28.6.773
  22. Lee HB, Yang CB, Yu TJ (1972). Studies on the chemical composition of some fruit vegetables and fruits in Korea(I). Korean J Food Sci Technol 4(1):36-43.
  23. Lee KR, Kozukue N, Han JS, Park JH, Chang EY, Baek EJ, Friedman M (2004). Glycoalkaloids and metabolites inhibit the growth of human colon(HT29) and liver(HepG2) cancer cells. J Agric Food Chem 52(10):2832-2839. https://doi.org/10.1021/jf030526d
  24. Lee MS, Kim GH (1986). Quality evaluation of raw tomato fruits. J Food Sci 18(5):335-338.
  25. Lee YC (1984). Effect of ripening methods and harvest time on vitamin content of tomatoes. Food Sci Biotechnol 16(1):59-65.
  26. Lenucci MS, Cadinu D, Taurino M, Piro G, Dalessandro G (2006). Antioxidant composition in cherry and high-pigment tomato cultivars. J Agric Food Chem 54(7):2606-2613. https://doi.org/10.1021/jf052920c
  27. Leventhal AG, Wang YC, Pu ML, Zhou YF, Ma Y (2003). GABA and its agonists improved visual cortical function in senescent monkeys. Science 300(5620):812-815. https://doi.org/10.1126/science.1082874
  28. Metodiewa D, Kochman A, Karolczak S (1997) Evidence for antiradical and antioxidant properties of four biologically active N,N-Diethylaminoethyl ethers of flavaone oximes: A comparison with natural polyphenolic flavonoid rutin action. IUBMB Life 41(5):1067-1075. https://doi.org/10.1080/15216549700202141
  29. Moco S, Bino RJ, Vorst O, Verhoeven HA, Groot J, van Beek TA, Vervoort J, Ric de Vos CH (2006). A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141(4):1205-1218. https://doi.org/10.1104/pp.106.078428
  30. Mullen W, Marks SC, Crozier A (2007). Evaluation of phenolic compounds in commercial fruit juices and fruit drinks. J Agric Food Chem 55(8):3148-3157. https://doi.org/10.1021/jf062970x
  31. Na YP, Lee SM, Roh KS (2007). Biochemical characterization of lectin isolated from cherry tomato. J Life Sci 17(2):254-259. https://doi.org/10.5352/JLS.2007.17.2.254
  32. Navarro-Núñez L, Lozano ML, Palomo M, Martinez C, Vicente V, Castillo J, Benavente-Garcia O, Diaz-Ricart M, Escolar G, Rivera J (2008). Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway. J Agric Food Chem 56(9): 2970-2976. https://doi.org/10.1021/jf0723209
  33. Nicolas B, Hilled F (2004). GABA in plants : just a metabolite? Trends Plant Sci 9(3):110-115. https://doi.org/10.1016/j.tplants.2004.01.006
  34. Oshima S, Ojima F, Sakamoto H, Ishiguro Y, Terao J (1998). Supplementation with carotenoids inhibits singlet oxigen-mediated oxidation of human plasma low-density lipoprotein. J Agric Food Chem 44(8):2306-2309.
  35. Pratta G, Zorzoli R, Boggio SB, Picardi LA, Valle EM (2004). Glutamine and glutamate levels and related metabolizing enzymes in tomato fruits with different shelf-life. Scientia Horticulturae 100(1):341-347. https://doi.org/10.1016/j.scienta.2003.08.004
  36. Raffo A, Malfa GL, Fogliano V, Maiani G, Quaglia G (2006) Seasonal variations in antioxidant components of cherry tomatos(Lycopersicon esculentum cv. Naomi F1). J Food Comp Anal 19(1):11-19. https://doi.org/10.1016/j.jfca.2005.02.003
  37. Roh KS (2010). Antifungal activity and biochemical characterization of lectin isolated locular fluid of cherry tomato fruit. KSBB Journal 25(3):289-296.
  38. Ryu BH, Moon KD, Kim SD, Sohn TH (1990). The changes of hardness and mineral components of tomato fruits during ripening. J Korean Soc Food Nutr 19(2):115-120.
  39. Shelp BJ, Bown AW, McLean MD (1999). Metabolism and functions of gamma aminobutyric acid. Trends Plant Sci 4(11):446-452. https://doi.org/10.1016/S1360-1385(99)01486-7
  40. Stahl W, Heinrich U, Wiseman S, Eichler O, Sies H, Tronnier H (2001). Dietary tomato paste protects against ultraviolet light-induced erythema in human. J Nutr 131(5):1449-1451.
  41. Yamamoto T, Yoshimura M, Yamaguchi F, Kouchi T, Tsuji R, Saito M, Obata A, Kikuchi M (2004). Anti-allergic activity of naringenin chalcone from a tomato skin extract. Biosci. Biotechnol. Biochem 68(8):1706-1711. https://doi.org/10.1271/bbb.68.1706