Abstract
Cache based live migration method utilizes a cache, which is accessible to both side (remote and local), to reduce the virtual machine migration time, by transferring only irredundant data. However, address space layout randomization (ASLR) is proved to reduce the memory duplicate ratio between targeted migration memory and the migration cache. In this pager, we analyzed the behavior of ASLR to find out how it changes the physical memory contents of virtual machines. We found that among six virtual memory regions, only the modification to stack influences the page-level memory duplicate ratio. Experiments showed that: (1) the ASLR does not shift the heap region in sub-page level; (2) the stack reduces the duplicate page size among VMs which performed input replay around 40MB, when ASLR was enabled; (3) the size of memory pages, which can be reconstructed from the fresh booted up state, also reduces by about 60MB by ASLR. With those observations, when applying cache-based migration method, we can omit the stack region. While for other five regions, even a coarse page-level redundancy data detecting method can figure out most of the duplicate memory contents.