References
- Adak, A., Bandyopadhyay, M. and Pal, A. (2006), "Fixed bed column study for the removal of crystal violet (C. I. Basic Violet 3) dye from aquatic environment by surfactant-modified alumina", Dyes. Pigments., 69(3), 245-251. https://doi.org/10.1016/j.dyepig.2005.03.009
- Aksu, Z. and Gonen, F. (2004), "Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves", Process Biochem., 39(5), 599-613. https://doi.org/10.1016/S0032-9592(03)00132-8
- APHA, AWWA, WPCF (2005), Standard Methods for the Examination of Water and Wastewater, (21st Ed.), American Public Health Association, Washington DC, USA.
- Cavas, L., Karabay, Z., Alyuruk, H., Dogan, H. and Demir, G.K. (2011), "Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves", Chem. Eng. J., 171(2), 557-562. https://doi.org/10.1016/j.cej.2011.04.030
- Chen, J.G., Kong, H.N., Wu, D.Y., Chen, X.C., Zhang, D.L. and Sun, Z.H. (2007), "Phosphate immobilization from aqueous solution by fly ashes in relation to their composition", J. Hazard. Mater., 39(2), 293-300.
- Chen, S., Yue, Q., Gao, B., Li, Q., Xu, X. and Fu, K. (2012), "Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: A fixed-bed column study", Bioresour. Technol., 113, 114-120. https://doi.org/10.1016/j.biortech.2011.11.110
- Chen, H., Zhang, H. and Yan, Y. (2013), "Adsorption dynamics of toluene in structured fixed bed with ZSM-5 membrane/PSSF composites", Chem. Eng. J., 228, 336-344. https://doi.org/10.1016/j.cej.2013.04.102
- Jia, C.R., Dai, Y.R., Chang, J.J., Wu, C.Y., Wu, Z.B. and Liang, W. (2013), "Adsorption characteristics of used brick for phosphorous removal from phosphate solution", Desalin. Water Treat., 51(28-30), 5886-5891. https://doi.org/10.1080/19443994.2013.770207
- Chimenos, J.M., Fernandez, A.I., Villalba, G., Segarra, M., Urruticoechea, A., Artaza, B. and Espiella, F. (2003), "Removal of ammonium and phosphates from wastewater resulting from the process of cochineal extraction using MgO-containing by-product", Water Res., 37(7), 1601-1607. https://doi.org/10.1016/S0043-1354(02)00526-2
- Elzinga, E.J. and Sparks, D.L. (2007), "Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation", J. Colloid. Interf. Sci., 308(1), 53-70. https://doi.org/10.1016/j.jcis.2006.12.061
- Huang, W., Li, D., Zhu, Y., Xu, K., Li, J., Han, B. and Zhang, Y. (2013a), "Phosphate adsorption on aluminum-coordinated functionalized macroporous-mesoporous silica:Surface structure and adsorption behavior", Mater. Res. Bull., 48(12), 4974-4978. DOI: http://dx.doi.org/10.1016/j.materresbull.2013.04.093
- Huang, W.Y., Zhu, R.H., He, F., Li, D., Zhu, Y. and Zhang, Y.M. (2013b), "Enhanced phosphate removal from aqueous solution by ferric-modified laterites: Equilibrium, kinetics and thermodynamic studies", Chem. Eng. J., 228, 679-687. https://doi.org/10.1016/j.cej.2013.05.036
- Hutchins, R.A. (1973), "New method simplifies design of activated carbon systems", Chem. Eng., 20, 133-138.
- Ioannou, Z., Dimirkou, A. and Ioannou, A. (2013), "Phosphate adsorption from aqueous solutions onto Goethite, Bentonite, and Bentonite-Goethite system", Water Air Soil Pollut., 224, 1374-1382. https://doi.org/10.1007/s11270-012-1374-3
- Jia, Z., Wang, Q., Liu, J., Xu, L. and Zhu, R. (2013), "Effective removal of phosphate from aqueous solution using mesoporous rodlike NiFe2O4 as magnetically separable adsorbent", Colloids. Surf. A Physicochem. Eng. Asp., 436, 495-503. DOI: http://dx.doi.org/10.1016/j.colsurfa.2013.07.025
- Johansson, L. and Gustafsson, J.P. (2000), "Phosphate removal using blast furnace slags and opokamechanisms", Water Res., 34(1), 259-265. https://doi.org/10.1016/S0043-1354(99)00135-9
- Kadam, A.M., Nemade, P.D., Oza, G.H. and Shankar, H.S. (2009), "Treatment of municipal wastewater using laterite-based constructed soil filter", Ecol. Eng., 35(7), 1051-1061. https://doi.org/10.1016/j.ecoleng.2009.03.008
- Karageorgiou, K., Paschalis, M. and Anastassakis, G.N. (2007), "Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent", J. Hazard. Mater., 139(3), 447-452. https://doi.org/10.1016/j.jhazmat.2006.02.038
- Kennedy, V.J., Augusthy, A., Varier, K.M., Magudapathy, P., Panchapakesan, S., Nair, K.G.M. and Vijayan, V. (1999), "Elemental analysis of river sediments by PIXE and PIGE", Int. J. PIXE., 09, 407-416. https://doi.org/10.1142/S0129083599000516
- Krishnan, K.A. and Haridas, A. (2008), "Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith", J. Hazard. Mater., 152(2), 527-535. https://doi.org/10.1016/j.jhazmat.2007.07.015
- Liana, A.R., Maria, L. and Caetano, P.S. (2010), "Adsorption kinetic, thermodynamic and desorption studies of phosphate onto hydrous niobium oxide prepared by the reverse microemulsion method", Adsorption, 16(3), 173-181. https://doi.org/10.1007/s10450-010-9220-7
- Lindsay, W.L. (1979), Chemical Equilibria in Soils, Wiley, New York, USA.
- Mateus, D.M.R. and Pinho, H.J.O. (2010), "Phosphorous removal by expanded clay-six years of pilot-scale constructed wetlands experience", Water. Environ. Res., 82(2), 128-137. https://doi.org/10.2175/106143009X447894
- Mateus, D.M.R., Vaz, M.M.N. and Pinho, H.J.O. (2012), "Fragmented limestone wastes as a constructed wetland substrate for phosphorous removal", Ecol. Eng., 41, 65-69. https://doi.org/10.1016/j.ecoleng.2012.01.014
- Nur, T., Johir, M.A.H., Loganathan, P., Nguyen,T., Vigneswaran, S. and Kandasamy, J. (2013), "Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin", J. Ind. Eng. Chem., 20(4), 1031-1037. DOI: http://dx.doi.org/10.1016/j.jiec.2013.07.009
- Rahaman, M.A., Ahsan, S., Kaneco, S., Katsumata, H., Suzuki, T. and Ohta, K. (2005), "Wastewater treatment with multilayer media of waste and natural indigenous materials", J. Environ. Manage., 74(2), 107-110. https://doi.org/10.1016/j.jenvman.2004.08.012
- Rout, P.R., Bhunia, P. and Dash, R.R. (2014a), "A mechanistic approach to evaluate the effectiveness of red soil as a natural adsorbent for phosphate removal from wastewater", Desalin. Water. Treat. DOI: http://dx.doi.org/10.1080/19443994.2014.881752
- Rout, P.R, Bhunia, P. and Dash, R.R. (2014b), "Modelling isotherms, kinetics and understanding the mechanism of phosphate adsorption onto a solid waste: Ground Burnt Pattie", J. Environ. Chem. Eng., 2(3), 1331-1342. https://doi.org/10.1016/j.jece.2014.04.017
- Sun, X.F., Imai, T., Sekine, M., Higuchi,T., Yamamoto, K. and Kanno, A. (2013), "Adsorption of phosphate using calcined Mg3-Fe layered 3 double hydroxides in a fixed-bed column study", J. Ind. Eng. Chem., 20(5), 3623-3630. DOI: http://dx.doi.org/10.1016/j.jiec.2013.12.057
- Thomas, H.C. (1944), "Heterogeneous ion exchange in a flowing system", J. Am. Chem. Soc., 66(), 1466-1664. DOI: http://dx.doi.org/10.1021/ja01238a017
- Uddin, Md.T., Rukanuzzaman, Md., Khan, Md.M.R. and Islam, Md.A. (2009), "Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fixed-bed column study", J. Env. Manag., 90(11), 3443-3450. https://doi.org/10.1016/j.jenvman.2009.05.030
- Wang, Y., Gao, B.Y., Yue, W.W., Xu, X.M. and Xu, X. (2008), "Adsorption kinetics of phosphate from aqueous solutions onto modified corn residue", Environ. Sci., 29(3), 703-708.
- Yaghmaeian, K., Moussavi, G. and Alahabadi, A. (2014), "Removal of amoxicillin from contaminated water using NH4Cl-activated carbon: Continuous flow fixed-bed adsorption and catalytic ozonation regeneration", Chem. Eng. J., 236, 538-544. https://doi.org/10.1016/j.cej.2013.08.118
- Yan, G., Viraraghavan, T. and Chen, M. (2001), "A new model for heavy metal removal in a biosorption column", Adsorpt. Sci. Technol., 19(1), 25-43. https://doi.org/10.1260/0263617011493953
- Yang, J., Wang, S., Lu, Z.B. and Lou, S.J. (2009), "Converter slag-coal cinder columns for the removal of phosphorous and other pollutants", J. Hazard. Mater., 168(1), 331-337. https://doi.org/10.1016/j.jhazmat.2009.02.024
- Yoon, Y.H. and Nelson, J.H. (1984), "Application of gas adsorption kinetics. Part 1. A theoretical model for respirator cartridge service time", Am. Ind. Hyg. Assoc. J., 45(8), 509-516. https://doi.org/10.1080/15298668491400197
- Yuan, M., Carmichael, W.W. and Hilborn, E.D. (2006), "Microcystin analysis in human sera and 469 liver from human fatalities in Caruaru, Brazil", Toxicon, 48(6), 627-640. https://doi.org/10.1016/j.toxicon.2006.07.031
- Zhang, L., Hong, S., He, J., Gan, F. and Ho, Y.S. (2011), "Adsorption characteristic studies of phosphorous onto laterite", Desalin. Water Treat., 25(1-3), 98-105. https://doi.org/10.5004/dwt.2011.1871
- Zhao, B., Shang, Y., Xiao, W., Dou, C. and Han, R. (2014), "Adsorption of Congo red from solution using cationic surfactant modified wheat straw in column model", J. Env. Chem. Eng., 2(1), 40-45. https://doi.org/10.1016/j.jece.2013.11.025
-
Zheng, T.T., Sun, Z.X., Yang, X.F. and Holmgren, A. (2012), "Sorption of phosphate onto mesoporous
$\gamma$ -alumina studied with in-situ ATR-FTIR spectroscopy", Chemistry Cent. J., 6(1), 26-36. https://doi.org/10.1186/1752-153X-6-26 - Zong, E., Wei, D., Wan, H., Zheng, S., Xu, Z. and Zhu, D. (2013), "Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalizedgraphite oxide", Chem. Eng. J., 221, 193-203. https://doi.org/10.1016/j.cej.2013.01.088
Cited by
- Nutrient removal from binary aqueous phase by dolochar: Highlighting optimization, single and binary adsorption isotherms and nutrient release vol.100, 2016, https://doi.org/10.1016/j.psep.2016.01.001
- Assessing Possible Applications of Waste Organic Solid Substances as Carbon Sources and Biofilm Substrates for Elimination of Nitrate Toxicity from Wastewater vol.21, pp.3, 2017, https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000350
- Performance evaluation of activated neem bark for the removal of Zn(II) and Cu(II) along with other metal ions from aqueous solution and synthetic pulp & paper industry effluent using fixed-bed reactor vol.102, 2016, https://doi.org/10.1016/j.psep.2016.05.009
- Evaluation of kinetic and statistical models for predicting breakthrough curves of phosphate removal using dolochar-packed columns vol.17, 2017, https://doi.org/10.1016/j.jwpe.2017.04.003
- Fixed-bed column dynamics of xanthate-modified apple pomace for removal of Pb(II) pp.1735-2630, 2018, https://doi.org/10.1007/s13762-018-2019-x
- Immobilization of phosphate by a Technosol spolic silandic: kinetics, equilibrium and dependency on environmental variables vol.18, pp.9, 2018, https://doi.org/10.1007/s11368-018-1970-y
- Adsorption of phosphorus by alkaline Tunisian soil in a fixed bed column vol.78, pp.4, 2014, https://doi.org/10.2166/wst.2018.341
- Mechanistic Modeling and Process Design for Removal of Anionic Surfactant Using Dolochar vol.24, pp.3, 2020, https://doi.org/10.1061/(asce)hz.2153-5515.0000492
- Removal of Textile Dyes from Aqueous Solutions by Dolochar: Equilibrium, Kinetic, and Thermodynamic Studies vol.24, pp.3, 2020, https://doi.org/10.1061/(asce)hz.2153-5515.0000509
- Fixed-Bed Column Technique for the Removal of Phosphate from Water Using Leftover Coal vol.14, pp.19, 2014, https://doi.org/10.3390/ma14195466
- Sustainable recovery of plant essential Nitrogen and Phosphorus from human urine using industrial coal fly ash vol.24, pp.None, 2014, https://doi.org/10.1016/j.eti.2021.101985