DOI QR코드

DOI QR Code

라만 분광법과 부분최소자승법을 이용한 불량 분말식품 비파괴검사 기술 개발

Development of Nondestructive Detection Method for Adulterated Powder Products Using Raman Spectroscopy and Partial Least Squares Regression

  • 이상대 (충남대학교 바이오시스템공학과) ;
  • ;
  • 조병관 (충남대학교 바이오시스템공학과) ;
  • 김문성 (미농부성 농업연구청) ;
  • 이수희 ((주)생명과기술)
  • 투고 : 2014.04.16
  • 심사 : 2014.08.19
  • 발행 : 2014.08.30

초록

본 연구는 라만 분광법과 부분최소자승법을 이용하여 불량 분말식품을 비파괴적으로 검출할 수 있는 기술을 개발하기 위해 수행되었다. 향신료와 건강보조식품 등으로 소비가 증가하고 있는 마늘과 생강분말을 실험대상으로 선정하고 옥수수 전분을 농도별로 혼합하여 시료를 제작하였다. 라만 반사스펙트럼과 부분최소자승법을 이용하여 불량 분말식품에 혼합된 옥수수 전분의 농도를 예측하기 위한 모델을 개발하고 교차검증을 통해 그 성능을 평가하였다. 또한 변수중요도척도를 이용하여 예측모델의 개발에 기여도가 높은 라만스펙트럼을 선정한 후 이 스펙트럼을 이용하여 새로운 예측모델을 개발하였다. 그 결과 전체 라만 스펙트럼의 약 1/3에 해당하는 스펙트럼 데이터만을 이용하여 전체 라만 스펙트럼을 이용하여 개발된 예측모델과 같은 성능을 갖는 모델을 개발하는 것이 가능하였다.

This study was conducted to develop a non-destructive detection method for adulterated powder products using Raman spectroscopy and partial least squares regression(PLSR). Garlic and ginger powder, which are used as natural seasoning and in health supplement foods, were selected for this experiment. Samples were adulterated with corn starch in concentrations of 5-35%. PLSR models for adulterated garlic and ginger powders were developed and their performances evaluated using cross validation. The $R^2_c$ and SEC of an optimal PLSR model were 0.99 and 2.16 for the garlic powder samples, and 0.99 and 0.84 for the ginger samples, respectively. The variable importance in projection (VIP) score is a useful and simple tool for the evaluation of the importance of each variable in a PLSR model. After the VIP scores were taken pre-selection, the Raman spectrum data was reduced by one third. New PLSR models, based on a reduced number of wavelengths selected by the VIP scores technique, gave good predictions for the adulterated garlic and ginger powder samples.

키워드

참고문헌

  1. H. J. Son, E. J. Hong, S. Ko, J. Y. Choi and B. S. Noh, "Identification of vegetable oil-added sesame oil by a mass spectrometer-based electronic noise," Food Engineering Progress, Vol. 13(4), pp. 275-281 (2009)
  2. M. Tay, G. Fang, P. L. Chia and D. F. Y. Li, "Rapid screening for detection and differentiation of detergent powder adulteration in infant milk formula by LC-MS," Forensic Science International, Vol. 232(1-3), pp. 32-39 (2013) https://doi.org/10.1016/j.forsciint.2013.06.013
  3. G. Flores, M. L. R. Castillo, M. Herraiz and G. P. Blanch, "Study of the adulteration of olive oil with hazelnut oil by on-line coupled high performance liquid chromatographic and gas chromatographic analysis of filbertone," Food Chemistry, Vol. 97(4), pp. 742-749 (2006) https://doi.org/10.1016/j.foodchem.2005.06.008
  4. Y. H. Cheng, S. D. Chen and C. F. Weng, "Investigation of goats' milk adulteration with cows' milk by PCR," Asian-Australasian Journal of Animal Sciences, Vol. 19(10), pp. 1503-1507 (2006) https://doi.org/10.5713/ajas.2006.1503
  5. I. P. Hurley, R. C. Coleman, H. E. Ireland and I. H. H. Williams, "Use of sandwich IgG ELISA for the detection and quantification of adulteration of milk and soft cheese," International Dairy Journal, Vol. 16, pp. 805-812 (2006) https://doi.org/10.1016/j.idairyj.2005.07.009
  6. R. Kizil, J. Irudayarai and K. Seetharaman, "Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy," Journal Agricultural and Food Chemistry, Vol. 50(14), pp. 3912-3918 (2002) https://doi.org/10.1021/jf011652p
  7. H. Lee, B. K. Cho, M. S. Kim, W. H. Lee, J. Tewari, H. Bae, S. I. Sohn and H. Y. Chi, "Prediction of crude protein and oil content of soybean using Raman spectroscopy," Sensors and Actuators B: Chemical, Vol. 185, pp. 694-700 (2013) https://doi.org/10.1016/j.snb.2013.04.103
  8. J. G. Lim, M. S. Kim, I. Back, C. Y. Mo, H. Lee, S. Kang, K. Lee and G. Kim, "Prediction of the melamine particle concentration in milk powder using hyperspectral reflectance imaging and partial least square regression model," Food Engineering Progress, Vol. 17(4), pp. 377-386 (2013) https://doi.org/10.13050/foodengprog.2013.17.4.377
  9. S. Wold, M. Sjostrom and L. Ericksson, "PLS-regression: a basic tool of chemometrics," Chemometrics and Intelligent Laboratory Systems, Vol. 58, pp. 109-130 (2001) https://doi.org/10.1016/S0169-7439(01)00155-1
  10. H. Kim, J. H. Ryu and J. J. Liu, "Development of on-line quantitative analysis for bioethanol using infrared spectroscopy," Applied Chemical for Engineering, Vol. 23(1), pp. 35-41 (2012)
  11. M. R. Almeida, R. S. Alves, L. B. L. R. Nascimbem, R. Stephani, R. J. Poppi and L. F. C. de Oliveria, "Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis," Analytical and Bioanalytical Chemistry, Vol. 397(7), pp. 2693-2701 (2010) https://doi.org/10.1007/s00216-010-3566-2
  12. Y. Zhao, C. Y. Ma, S. N. Yuen and D. L. Phillips, "Study of succinylated food proteins by Raman spectroscopy," Journal Agricultural and Food Chemistry, Vol. 52(7), pp. 1815-23 (2004) https://doi.org/10.1021/jf030577a
  13. W. Dong, Y. Zhang, B. Zhang and X. Wang, "Rapid prediction of fatty acid composition of vegetable oil by Raman spectroscopy coupled with least squares support vector machines," Journal of Raman Spectroscopy, Vol. 44, pp. 1739-1745 (2013) https://doi.org/10.1002/jrs.4386

피인용 문헌

  1. Chemometrics Approach For Species Identification of Pinus densiflora Sieb. et Zucc. and Pinus densiflora for. erecta Uyeki - Species Classification Using Near-Infrared Spectroscopy in combination with Multivariate Analysis - vol.43, pp.6, 2015, https://doi.org/10.5658/WOOD.2015.43.6.701
  2. Classification of papers using IR and NIR spectra and principal component analysis vol.48, pp.1, 2016, https://doi.org/10.7584/ktappi.2016.48.1.034