DOI QR코드

DOI QR Code

A MULTIVARIABLE MAYER-ERDÖS PHENOMENON

  • Meng, Xianchang (Department of Mathematics University of Illinois at Urbana-Champaign) ;
  • Zaharescu, Alexandru (Department of Mathematics University of Illinois at Urbana-Champaign)
  • Received : 2014.02.05
  • Published : 2014.09.01

Abstract

In this paper we consider a generalization of the Mayer-Erd$\ddot{o}$s phenomenon discussed in [12] to linear forms in a larger number of variables.

Keywords

References

  1. E. Alkan, M. S. Xiong, and A. Zaharescu, A bias phenomenon on the behavior of Dedekind sums, Math. Res. Lett. 15 (2008), no. 5, 1039-1052. https://doi.org/10.4310/MRL.2008.v15.n5.a16
  2. E. Alkan, M. S. Xiong, and A. Zaharescu, Quotients of values of the Dedekind eta function, Math. Ann. 342 (2008), no. 1, 157-176. https://doi.org/10.1007/s00208-008-0228-1
  3. J. Athreya and Y. Cheung, A Poincare section for horocycle flow on the space of lattices, to appear in Int. Math. Res. Not. IMRN 2013.
  4. F. P. Boca, C. Cobeli, and A. Zaharescu, Distribution of lattice points visible from the origin, Comm. Math. Phys. 213 (2000), no. 2, 433-470. https://doi.org/10.1007/s002200000250
  5. F. P. Boca, C. Cobeli, and A. Zaharescu, A conjecture of R. R. Hall on Farey points, J. Reine Angew. Math. 535 (2001), 207-236.
  6. F. P. Boca and A. Zaharescu, Farey fractions and two-dimensional tori, Noncommutative geometry and number theory, 57-77, Aspects Math., E37, Vieweg, Wiesbaden, 2006.
  7. P. Erdos, A note on Farey series, Quart. J. Math., Oxford Ser. 14 (1943), 82-85.
  8. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1988, Reprint of the 1952 edition. Cambridge Mathematical Library, xii+324pp.
  9. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1938.
  10. A. E. Mayer, A mean value theorem concerning Farey series, Quart. J. Math., Oxford Ser. 13 (1942), 48-57.
  11. A. E. Mayer, On neighbours of higher degree in Farey series, Quart. J. Math., Oxford Ser. 13 (1942), 185-192.
  12. A. Zaharescu, The Mayer-Erdos phenomenon, Indag. Math. (N.S.) 17 (2006), no. 1, 147-156. https://doi.org/10.1016/S0019-3577(06)80012-1