DOI QR코드

DOI QR Code

A Pilot Study on Applying Text Mining Tools to Analyzing Steel Industry Trends : A Case Study of the Steel Industry for the Company "P"

철강산업 트렌드 분석을 위한 텍스트 마이닝 도입 연구 : P사(社) 사례를 중심으로

  • Min, Ki Young (Graduate Program in Technology Policy, Yonsei University, Center for Economy Research and Analysis, Posco Research Institute) ;
  • Kim, Hoon Tae (Graduate Program in Technology Policy, Yonsei University, Center for Economy Research and Analysis, Posco Research Institute) ;
  • Ji, Yong Gu (Information and Industrial Engineering, Yonsei University)
  • Received : 2014.06.18
  • Accepted : 2014.08.14
  • Published : 2014.08.31

Abstract

It becomes more and more important for business survival to have the ability to predict the future with uncertainties increasing faster and faster. To predict the future, text mining tools are one of the main candidate other than traditional quantitative analyses, but those efforts are still at their infancy. This paper is to introduce one of those efforts using the case of company "P" in the steel industry. Even with only four month pilot studies, we found strong possibilities, if not testified robustly, to predict future industrial trends using text mining tools. For these text mining case studies, we categorized steel industry trend keywords into ten components (10 categories) to study ten different subjects for each category. Once found any meaningful changes in a trend, we had investigated in more detail what and how some trend happened so. To be more roust, firstly we need to define more cleary the purpose of text mining analyses. Then we need to categorize industry trend key words in a more systematic way using systems thinking models. With these improvements, we are quite sure that applying text mining tools to analyzing industry trends will contribute to predicting the future industry trends as well as to identifying the unseen trends otherwise.

기업은 생존을 위해 수많은 정보 속에서 빠르게 상황을 인식하고 미래를 예측하기 위해 정량데이터 분석뿐만 아니라 비정형데이터 분석에 대한 관심이 높아지고 있으나, 철강산업에서는 아직 활발하게 활용되지는 못하고 있다. 이에 본 연구에서는 글로벌 철강회사인 P사(社)의 사례를 중심으로 텍스트 마이닝을 이용한 산업트렌드 분석을 시도해 경쟁사 전략, 관심국가의 시장변화, 해외사업장 여론 등을 파악 하는데 기여할 수 있다는 가능성을 발견하였다. 사례 분석은 철강산업을 10개의 카테고리로 분류하고 각각 10개의 주제를 선정하여 분석을 시도하고, 이중 의미 있는 변화를 발견하면 심층 분석하는 형태로 진행하였다. 이번 P사(社)의 사례를 통해 텍스트 마이닝을 통한 산업트렌드 분석이 더 의미 있기 위해서는 목적을 명확히 하고, 관련 키워드를 체계화한다면 경쟁사 전략 파악, 리스크관리, 정량데이터 예측 보정 등 많은 부분에 기여할 수 있을 것으로 기대한다.

Keywords

References

  1. Bae, J. H., Son, J. E., and Song, M., "Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques," J Intell Inform syst 2013 September, Vol. 19, No. 3, pp. 141-156, 2013. https://doi.org/10.13088/jiis.2013.19.3.141
  2. Bae, S. J. and Park, C. K., "Analysis of text mining techniques Feasibility Study Technical Information," Korea Technology Innovation Society Conference 2003, pp. 75-88, 2003.
  3. Cho, G. H., Lim, S. Y., and Hur, S., "An Analysis of the Research Methodologies and techniques in the Industrial Engineering Using Text Mining," Journal of Korean institute of industrial engineers, Vol. 40, No. 1, pp. 52-59, 2014. https://doi.org/10.7232/JKIIE.2014.40.1.052
  4. Galit, S., Data mining for business intelligence, Wiley, 2011.
  5. He, Q., "Knowledge Discovery Through Co-Word Analysis," Library Trends, Vol. 48, No. 1, pp. 133-159, 1999.
  6. Jiawel, H., Data Mining Concepts and Techniques, Elsevier, 2011.
  7. Jung, Y. C., Bing Data, Communication books, 2013.
  8. Kim, B. H. and Hong, S. I., Principles of Economics, Chongmok Publisher, 2012.
  9. Kim, D. H., System Thinking, Sunhaksa, 2004.
  10. Kim, H. J. and Song, M., "A Study on the Research Trends in Domestic/International Information Science Articles by Co-word Analysis," Journal of the Korean society for information management, Vol. 31, No. 1, pp. 99-118, 2014. https://doi.org/10.3743/KOSIM.2014.31.1.099
  11. Kim, J. H. and Gong, M. G., "Structural Changes in the Global Steel Industry and Future Prospects," Journal of the Economic Policy and Industrial Research, Vol. 174, pp. 85-114, Fall 2012.
  12. Lee, S. J. and Kim, H. J., "Keyword Extraction from News Corpus using Modified TF-IDF," The Journal of Society for e-Business Studies, Vol. 14, No. 4, pp. 59-73, 2009.
  13. LG CNS Official Blog, Social analytics solutions using big data 'SMART SMA' intensive exploration, 2014, http://blog.lgcns.com/469.
  14. Ulf, P., Trends und Szenarien als Werkzeuge zur Strategieentwicklung, Publicis, 2008.

Cited by

  1. A Methodology for Analyzing Public Opinion about Science and Technology Issues Using Text Analysis vol.14, pp.3, 2015, https://doi.org/10.9716/KITS.2015.14.3.033
  2. Developing a Methodology of Structuring and Layering Technological Information in Patent Documents through Natural Language Processing vol.9, pp.11, 2017, https://doi.org/10.3390/su9112117
  3. Text Mining-Based Emerging Trend Analysis for the Aviation Industry vol.21, pp.1, 2015, https://doi.org/10.13088/jiis.2015.21.1.65
  4. 텍스트 마이닝을 활용한 직업학 연구동향 분석 vol.18, pp.3, 2014, https://doi.org/10.5762/kais.2017.18.3.586
  5. 빅데이터 기반의 아파트 수요 트렌드 분석에 관한 연구 vol.18, pp.6, 2014, https://doi.org/10.6106/kjcem.2017.18.6.013
  6. 나노 인포매틱스 기반 구축을 위한 구글 트렌드와 데이터 마이닝 기법을 활용한 나노 기술 트렌드 분석 vol.40, pp.4, 2017, https://doi.org/10.11627/jkise.2017.40.4.237