DOI QR코드

DOI QR Code

A study on the analytic geometric characteristics of Archimedes' 《The Method》 and its educational implications

아르키메데스의 《The Method》의 해석기하학적 특성과 그 교육적 시사점에 대한 연구

  • Received : 2014.05.31
  • Accepted : 2014.07.16
  • Published : 2014.08.31

Abstract

This study takes a look at Polya's analysis on Archimedes' "The Method" from a math-historical perspective. We, based on the elaboration of Polya's analysis, investigate the analytic geometric characteristics of Archimedes' "The Method" and discuss the way of using the characteristics in education of school calculus. So this study brings up the educational need of approach of teaching the definite integral by clearly disclosing the transition from length, area, volume etc into the length as an area function under a curve. And this study suggests the approach of teaching both merit and deficiency of the indivisibles method, and the educational necessity of making students realizing that the strength of analytic geometry lies in overcoming deficiency of the indivisibles method by dealing with the relation of variation and rate of change by means of algebraic expression and graph.

Keywords

References

  1. C. B. BOYER, A History of Mathematics, Wiley, 1991. 양영오, 조윤동 역, 수학의 역사(상), 경문사, 2000.
  2. J. L. COOLIDGE, A History of Geometrical Method, New York, Dover Publications, 1963.
  3. C. H. EDWARDS, The Historical Development of the Calculus, New York, Springer-Verlag, 1979.
  4. T. L. HEATH, The Works of Archimedes with the Method of Archimedes, New York, Dover Publications, 1912.
  5. HONG G. J., An Educational Study on Archimedes' Mathematics, Doctoral Dissertation of Seoul National University, 2008. 홍갑주, 아르키메데스 수학의 교육적 연구, 서울대학교 박사학위논문, 2008.
  6. PARK S. Y., The New Interpretation of Archimedes' 'Method', The Korean Journal for History of Mathematics 23(4) (2010), 47-58. 박선용, 아르키메데스 '방법' 에 대한 새로운 해석, 한국수학사학회지 23(4) (2010), 47-58.
  7. PARK S. Y., HONG G. J., An Assumption on How Archimedes Found out the Center of Gravity of Cones in, Journal for History of Mathematics 26(5-6) (2013), 371-388. 박선용, 홍갑주, 아르키메데스가 에서 원뿔의 무게중심을 구한 방식에 대한 하나의 가설, 한국수학사학회지 26(5-6) (2013), 371-388. https://doi.org/10.14477/jhm.2013.26.5_6.371
  8. G. POLYA, Induction and Analogy in Mathematics, New Jersey, Princeton University, 1973. 이만근 외 역, 수학과 개연추론-수학에서의 귀납과 유추, 서울, 경문사, 2003.
  9. D. E. SMITH, History of Mathematics(Vol. 2), New York, Dover Publications, 1953.
  10. WOO J. H., The Basis of School Mathematics, Seoul, SNU Press, 2010. 우정호, 학교수학의 교육적 기초, 서울, 서울대학교 출판문화원, 2010.