DOI QR코드

DOI QR Code

Study on Effect of Particle Size of Ferrous Iron and Polishing Abrasive on Surface Quality Improvement

자기연마가공에서 자성입자와 연마재의 크기에 따른 표면개선 효과

  • Lee, Sung-Ho (Dept. of Steel Industry, Sunlin Coll.) ;
  • Son, Byung-Hun (Dept. of Mechanical Engineering, Pukyoung Nat'l Univ.) ;
  • Kwak, Jae-Seob (Dept. of Mechanical Engineering, Pukyoung Nat'l Univ.)
  • 이성호 (선린대학 제철산업학과) ;
  • 손병훈 (부경대학교 기계공학과) ;
  • 곽재섭 (부경대학교 기계공학과)
  • Received : 2014.04.09
  • Accepted : 2014.05.02
  • Published : 2014.09.01

Abstract

Magnetic Abrasive Polishing (MAP) process is a nontraditional method for polishing the surface of workpiece by using the flexibility of tool. At present, a mixture of polishing abrasives and ferrous particles is used as the tool in the MAP process. Previously, an experiment was conducted with different sizes of polishing abrasives with an aim to improve the polishing accuracy. However, the sizes of ferrous particles are also expected to have a dominant effect on the process, warranting a study on the effect of the size of ferrous iron particles. In this study, an experiment was conducted using three different sizes of ferrous particles. Iron powder of average diameters 8, 78 and $250{\mu}m$ was used as ferrous particles. The effect of each ferrous particle size was evaluated by comparing the improvements in surface roughness. The particle size of a ferrous iron was found to play a significant role in MAP and particles of $78{\mu}m$ facilitated the best improvement in surface roughness.

자기연마가공은 연마입자와 자성입자를 혼합한 공구의 유연성을 이용하여, 공작물 표면을 폴리싱하는 특수가공법이다. 기존 연구의 대부분은 가공 정밀도를 향상시키기 위해서 연마입자의 크기를 달리 하는 것에 관한 내용들이다. 그러나 자기연마 가공에서는 연마입자의 크기뿐만 아니라, 자성입자의 크기도 가공에 많은 영향을 미칠 것으로 판단되며 이에 대한 연구가 반드시 필요하다. 따라서 본 연구에서는 크기가 다른 자성입자들을 사용하여 자기연마가공의 효과를 평가하였다. 자성입자는 철분말을 사용하였으며, 직경이 평균 8, 78, $250{\mu}m$의 크기이다. 공작물의 표면거칠기 향상 정도를 비교하여 자성입자의 크기가 자기연마가공의 정밀도에 미치는 효과를 평가하였다. 자성입자의 크기는 표면거칠기의 향상에 많은 영향을 미치며, 직경이 $78{\mu}m$일 때 가장 좋은 표면거칠기의 향상을 나타내었다.

Keywords

References

  1. Wen, D. C., 2009, "Microstructure and Corrosion Resistance of the Layers Formed on the Surface of Precipitation Hardenable Plastic Mold Steel by Plasma-Nitriding," Applied Surface Science, Vol. 256, No. 3, pp. 797-804. https://doi.org/10.1016/j.apsusc.2009.08.062
  2. Singh, D. K. and Jain, V. K., 2005, "Analysis of Surface Texture Generated by a Flexible Magnetic Abrasive Brush," Wear, Vol. 259, No. 7-12, pp. 1254-1261. https://doi.org/10.1016/j.wear.2005.02.030
  3. Kwak, J. S., 2009, "Enhanced Magnetic Abrasive Polishing of Non-ferrous Metals Utilizing A Permanent Magnet," International Journal of Machine Tools and Manufacture, Vol. 49, No. 7-8, pp. 613-618. https://doi.org/10.1016/j.ijmachtools.2009.01.013
  4. Kim, S. O., You, M. H. and Kwak, J. S., 2010, "Tool Geometry Optimization and Magnetic Abrasive Polishing for Non-ferrous Material," Journal of the Korean Society of Machine Tool Engineers, Vol. 19, No. 3, pp. 313-320.
  5. Park, W. G., Roh, T. W. and Choi, H., 2004, "The Magnetic Finishing Characteristics of Non-Ferromagnetic Pipe Inside Polished," Transaction of the Korean Society of Machine Tool Engineers, Vol. 13, No. 6, pp. 74-80.
  6. Park, S. J. and Lee, S. J., 2004, "Fabrication of the Fine Magnetic Abrasives by Using Mechanical Alloying Process and Its Polishing Characteristics," Journal of the Korean Society of Precision Engineering, Vol. 21, No. 10, pp. 34-41.
  7. Mori, T. Hirota, K. and Kawashima, Y., 2003, "Clarification of magnetic abrasive finishing mechanism," Journal of Materials Processing Technology, Vol. 143-144, pp. 682-686. https://doi.org/10.1016/S0924-0136(03)00410-2