DOI QR코드

DOI QR Code

Relationship between a Dense Bloom of Cyanobacterium Anabaena spp. and Rainfalls in the North Han River System of South Korea

북한강 수계의 남조 Anabaena 대발생과 강우의 관계

  • Received : 2014.06.09
  • Accepted : 2014.06.30
  • Published : 2014.06.30

Abstract

To evaluate the relationship between dynamics of Cyanobacterial bloom and rainfalls, a monthly monitoring of water quality and phytoplankton from the three serial lakes (Lake Ui-am, Lake Chung-pyeong and Lake Pal-dang) in the North Han River System were examined 12 times from May 2012 to March 2013. A dense bloom of cyanobacterium Anabaena spp., was occurred over three lakes in the summer season of 2012. In Lake Ui-am, the Anabaena population appeared in June, showed a peak in July (43,850 cells $mL^{-1}$) and disappeared in November 2012. In Lake Chung-pyeong and Lake Pal-dang, Anabaena population commonly appeared in July, showed the peaks (31,648 cells $mL^{-1}$ and 7,136 cells $mL^{-1}$, respectively) in August, and entirely disappeared in September 2012. Over the three lakes, the phytoplankton community was commonly dominated by diatoms before Monsoon, cyanobacteria during Monsoon, and diatoms after Monsoon, respectively, indicating a Monsoon-dependent succession. A correlation analysis revealed that dynamics of Anabaena population was strongly related with rainfall (r=0.72, r=0.83, r=0.88, P<0.01 for three lakes), and partly with nutrients, inflow and outflow of lakes. Therefore, this study indicates that the outbreak and destruction of Anabaena bloom in North Han River System between 2012 and 2013 was impacted by rainfalls. However, a high density of cyanobacteria in Lake Ui-am remained after Monsoon, and thus, may paroduce bad-order and toxins from phytoplankton.

2012년 5월부터 2013년 4월까지 북한강 수계 3개의 연속댐(의암호, 청평호, 팔당호)의 수리-수문, 수질 및 식물플랑크톤 현존량 등을 월 1회씩 총 12회에 걸쳐 조사하였다. 3개 저수지의 식물플랑크톤 군집은 몬순전기에는 돌말류, 몬순기에는 남조류, 몬순후기에는 다시 돌말류가 우점하는 계절성을 보였으며, 팔당호에서는 몬순후기 저온기에 녹조류가 높은 밀도를 나타냈다. 조사기간동안 가장 높은 현존량을 보였던 남조 Anabaena spp.는 의암호에서 2012년 6월에 출현하여 7월에 최고치(43,850 cells $mL^{-1}$)를 보이고 높은 수준을 유지하다가 11월에 소멸되었다. 이에 비해 청평호 (31,648 cells $mL^{-1}$)와 팔당호 (7,136 cells $mL^{-1}$)에서는 공히 7월에 처음 출현하여 8월에 최고치를 보이다가 9월에 완전히 사라졌다. 수환경과 남조 Anabaena spp. 현존량과의 관계를 보면, 3개 저수지 모두 강우 (r=0.72, r=0.83, r=0.88, P<0.01 for all)를 비롯한 유입량, 유출량 및 영양염에 대하여 높은 상관성을 나타냈다. 따라서 2012년 봄철 갈수기 동안 북한강 수계 3개 저수지에서 일어난 Anabaena 대발생 및 소멸은 강우의 직, 간접적인 영향을 받았으며, 의암호는 강우 이후에도 상당기간 동안 다른 남조류가 비교적 높은 현존량을 유지하고 있어 상수원 저수지의 이취미 및 독소발생 가능성은 지속될 것으로 판단되었다.

Keywords

References

  1. APHA. 2005. Standard methods for the examination of water and wastewater, 19th ed., APHA-AWWA-WEF, Washing-ton D.C., USA.
  2. An, K.G. and J.R. Jones. 2000. Temporal and spatial patterns in ionic salinity and suspended solids in a reservoir influenced by the Asian monsoon. Hydrobiologia 436: 179-189. https://doi.org/10.1023/A:1026578117878
  3. Ha, K.J., K.S. Yun, J.G. Jhun and C.K. Park. 2005. Definition of onset/retreat and intensity of changma during the boreal summer monsoon season. Journal of the Korean Meteorological Society 41(6): 927-942.
  4. Han, M.S., Y.Y. Auh, J.K. Ryu, K.I. Yoo and Y.K. Choi. 1995. Ecological studies on Pal'tang river-reservoir system in Korea 2. Changes in phytoplankton community structure. Korean Journal of Limnological Society 28(3): 335-344.
  5. Havens, K.E. 2008. Cyanobacteria blooms: effects on aquatic ecosystems. In: Hudnell KH (ed). Cyanobacterial Harmful Algal Blooms: State of the Science and Research Springer: New York. 619: 675-732.
  6. Havens, K.E. and W.W. Walker. 2002. Development of a total phosphorus concentration goal in the TMDL process for Lake Okeechobee, Florida (USA). Lake and Reservoir Management 18: 227-238. https://doi.org/10.1080/07438140209354151
  7. Hecky, R.E. and P. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments : A review of recent evidence on the effects of enrichment. Limnology and Oceanography 33: 796-822. https://doi.org/10.4319/lo.1988.33.4_part_2.0796
  8. Jeon, H.W., J.W. Choi and K.G. An. 2012. Spatio-temporal water quality variations at various streams of Han-river watershed and empirical models of serial impoundment reservoirs. Korean Journal of Limnological Society 45(4): 378-391. https://doi.org/10.11614/KSL.2012.45.4.378
  9. Jone, J.R., M.F. Knowlton and K.G. An. 1997. Developing a paradigm to study and model the eutrophication process in Korean reservoirs. Korean Journal of Limnological Society 30(Special Issue): 463-471.
  10. Kim, B.C. and Y.H. Kim. 2004. Phosphorus cycle in a deep reservoir in Asian monsoon area (lake Soyang, Korea) and the modeling with a 2-D hydrodynamic water quality model. Korean Journal of Limnological Society 37(2): 205-212.
  11. Kim, Y.J. 1996. Ecological study of phytoplankton community and trophic states using indicators in lake paltang. Korean Journal of Limnology Society 19(4): 323-345.
  12. Li, Z., M.S. Han, S.O. Hwang, M.S. Byeon, S.J. Hwang and B.H. Kim. 2012. Molecular identification of the bloom-forming cyanobacterium Anabaena from North Han river system in Summer. Korean Journal of Ecology and Environment 46(2): 301-309.
  13. Murrell, M.C. and E.M. Lores. 2004. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. Journal of Plankton Research 26: 371-382. https://doi.org/10.1093/plankt/fbh038
  14. Park, H.K., M.S. Byeon, E.K. Kim, H.J. Lee, M.J. Chun and D.I. Jung. 2004. Water quality and phytoplankton distribution pattern in upper inflow rivers of lake paldang. Jounrnal of Korean Society on Water Quality 20(6): 615-624.
  15. Park, S.W., H.W. Lee, Y.S. Lee and S.S. Park. 2013. A hydrodynamic modeling study to analyze the water plume and mixing pattern of the Euiam. Korean Journal of Ecology and Enviroment 46(4): 488-498.
  16. Perkins, B. and J.R. Jones. 1994. Temporal variability in a Midwestern stream during spring. Verhandlungen des Internationalen Verein Limnologie 25: 1471-1476.
  17. Reynold, C.S. 1987. Cyanobactrial Water-blooms. Advances Botanical Research 13: 67-143. https://doi.org/10.1016/S0065-2296(08)60341-9
  18. Seo, J.K., J.J. Yu, J.J. Lee, S.Y. Yang and I.K. Chung. 2003. Phytoplankton community dynamics and evaluation of trophic state in the lake Unmoon. Algae 18(2): 135-148. https://doi.org/10.4490/ALGAE.2003.18.2.135
  19. Seo, M.Y., B.H. Kim and K.S. Bae. 2007. Fluctuation of environmental factors and dynamics of phytoplankton communities in lower part of the Han river. Korean Journal of Limnological Society 40(3): 395-402.
  20. Sheffer, M., S. Rinaldi, A. Grangnani, L.R. Mur and E.H. Nes. 1997. On the dominance of filamentous cyanobacteria in Shallow. Turbid lakes. Ecology 78: 272-282.
  21. Smith, V.H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669-671. https://doi.org/10.1126/science.221.4611.669
  22. Smith, V.H., E. Willen and B. karlsson. 1987. Predicting the summer peak biomass of four species of blue-green algae (cyanophyta/cyanobacteria) in Swedish lakes. Water Resources Bulleltin 23: 397-402. https://doi.org/10.1111/j.1752-1688.1987.tb00818.x
  23. Soranno, P.A. 1997. Factors affecting the timing of surface scums and epilimnetic blooms of blue-green algae in a eutrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 54: 1965-1975.
  24. Tirimbee, A.M. and E.E. Prepas. 1987. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lake. Canadian Journal of Fisheries and Aquatic Sciences 44: 1337-1342. https://doi.org/10.1139/f87-158
  25. Ward, J.V. and J.A. Stanford. 1983. Serial discontinuity concept of lotic ecosystems. In: Fontaine, T.D. and S.M. Bartell (eds) Dynamics of lotic systems. Ann Arbor Science, Ann Arbor, pp. 29-42.
  26. Watson, S.B., E. McCauley and J.A. Downing. 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnology and Oceanography 42: 487-495. https://doi.org/10.4319/lo.1997.42.3.0487
  27. Yunes, J.S., N.T. Cunha, L.A.O. Proenca, L.P. Barros and J.M. Monserrat. 2003. Cyanobacterial neurotoxins from Southern Brazilian freshwaters. Comments Toxicol 9: 103-115. https://doi.org/10.1080/08865140302426