DOI QR코드

DOI QR Code

The expression and secretion of vimentin in the progression of non-alcoholic steatohepatitis

  • Lee, Su Jin (School of Life Sciences, College of Natural Sciences, Kyungpook National University) ;
  • Yoo, Jae Do (School of Life Sciences, College of Natural Sciences, Kyungpook National University) ;
  • Choi, Soo Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kwon, Oh-Shin (School of Life Sciences, College of Natural Sciences, Kyungpook National University)
  • Received : 2013.11.22
  • Accepted : 2013.12.11
  • Published : 2014.08.31

Abstract

The pathogenesis of non-alcoholic steatohepatitis (NASH) is not fully understood. In the present study, both in vitro and in vivo vimentin expression and secretion in NASH were investigated. The exposure of palmitate and lipopolysaccharide (LPS) to HepG2 cells enhanced caspase-3 activity and vimentin expression, respectively. The combined effects of both treatments on vimentin expression and caspase-3 activation appeared to be synergic. In contrast, blockade of caspase-3 activity by zVADfmk resulted in a significant reduction of cleaved vimentin and secreted vimentin into the culture supernatant. Similarly, lipid accumulation and inflammation occurred in mice fed a methionine-choline-deficient diet; thus, vimentin expression and serum cleaved vimentin levels were increased. However, vimentin was not significantly upregulated, and no cleavage occurred in mice fed a high-fat diet. It was conclusively determined that lipid accumulation in hepatocytes induces apoptosis through a caspase-3 dependent pathway; whereas, LPS stimulates vimentin expression, leading to its cleavage and secretion. Increased vimentin fragment levels indicated the existence of substantial hepatocellular death via an apoptotic mechanism.

Keywords

References

  1. Schreuder, T. C., Verwer, B. J., van Nieuwkerk, C. M. and Mulder, C. J. (2007) Nonalcoholic fatty liver disease: an overview of current insights in pathogenesis, diagnosis and treatment. World J. Gastroenterol. 14, 2474-2486.
  2. Day, C. P. and James, O. F. (1998) Steatohepatitis: a tale of two "hits"? Gastroenterology 114, 842-845. https://doi.org/10.1016/S0016-5085(98)70599-2
  3. Marra, F., Gastaldelli, A., Svegliati Baroni, G., Tell, G. and Tiribelli, C. (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends. Mol. Med. 14, 72-81. https://doi.org/10.1016/j.molmed.2007.12.003
  4. Carter-Kent, C., Zein, N. N. and Feldstein, A. E. (2008) Cytokines in the pathogenesis of fatty liver and disease progression to steatohepatitis: implications for treatment. Am. J. Gastroenterol. 103, 1036-1042. https://doi.org/10.1111/j.1572-0241.2007.01709.x
  5. Alkhouri, N., Carter-Kent, C. and Feldstein, A. E. (2011) Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert. Rev. Gastroenterol. Hepatol. 5, 201-212. https://doi.org/10.1586/egh.11.6
  6. Wieckowska, A., Zein, N. N., Yerian, L. M., Lopez, A. R., McCullough, A. J. and Feldstein, A. E. (2006) In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 44, 27-33.
  7. Bantel, H., Ruck, P., Gregor, M. and Schulze-Osthoff, K. (2001) Detection of elevated caspase activation and early apoptosis in liver diseases. Eur. J. Cell Biol. 80, 230-239. https://doi.org/10.1078/0171-9335-00154
  8. Evans, R. M. (1998) Vimentin: the conundrum of the intermediate filament gene family. Bioessays 20, 79-86. https://doi.org/10.1002/(SICI)1521-1878(199801)20:1<79::AID-BIES11>3.0.CO;2-5
  9. Thiery, J. P. (2002) Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442-454. https://doi.org/10.1038/nrc822
  10. Byun, Y., Chen, F., Chang, R., Trivedi, M., Green, K. J. and Cryns, V. L. (2001) Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death. Differ. 8, 443-450. https://doi.org/10.1038/sj.cdd.4400840
  11. Park, J. E., Kim, H. T., Lee, S., Lee, Y. S., Choi, U. K., Kang, J. H., Choi, S. Y., Kang, T. C., Choi, M. S. and Kwon, O. S. (2011) Differential expression of intermediate filaments in the process of developing hepatic steatosis. Proteomics 11, 2777-2789. https://doi.org/10.1002/pmic.201000544
  12. Cong, M., Iwaisako, K., Jiang, C. and Kisseleva, T. (2012) Cell signals influencing hepatic fibrosis. Int. J. Hepatol. 2012, 158547.
  13. Feldstein, A. E., Wieckowska, A., Lopez, A. R., Liu, Y. C., Zein, N. N. and McCullough, A. J. (2009) Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology 50, 1072-1078. https://doi.org/10.1002/hep.23050
  14. Day, C. P. and James, O. F. (1998) Hepatic steatosis: innocent bystander or guilty party? Hepatology 27, 1463-1466. https://doi.org/10.1002/hep.510270601
  15. Seehase, S., Lauenstein, H. D., Schlumbohm, C., Switalla, S., Neuhaus, V., Forster, C., Fieguth, H. G., Pfennig, O., Fuchs, E., Kaup, F. J., Bleyer, M., Hohlfeld, J. M., Braun, A., Sewald, K. and Knauf, S. (2012) LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing. PLoS One 7, e43709. https://doi.org/10.1371/journal.pone.0043709
  16. Bhatia, M. and Moochhala, S. (2004) Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J. Pathol. 202, 145-156. https://doi.org/10.1002/path.1491
  17. Park, J. H., Kim, K. H., Lee, W. R., Han, S. M. and Park, K. K. (2012) Protective effect of melittin on inflammation and apoptosis in acute liver failure. Apoptosis 17, 61-69. https://doi.org/10.1007/s10495-011-0659-0
  18. Caulin, C., Salvesen, G. S. and Oshima, R. G. (1997) Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J. Cell Biol. 138, 1379-1394. https://doi.org/10.1083/jcb.138.6.1379
  19. Rao, L., Perez, D. and White, E. (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol. 135, 1441-1455. https://doi.org/10.1083/jcb.135.6.1441
  20. Mor-Vaknin, N, Punturieri, A., Sitwala, K. and Markovitz, D. M. (2003) Vimentin is secreted by activated macrophages. Nat. Cell Biol. 5, 59-63.
  21. Xu, B., deWaal, R. M., Mor-Vaknin, N., Hibbard, C., Markovitz, D. M. and Kahn, M. L. (2004) The endothelial cell-specific antibody PAL-E identifies a secreted form of vimentin in the blood vasculature. Mol. Cell Biol. 24, 9198-9206. https://doi.org/10.1128/MCB.24.20.9198-9206.2004

Cited by

  1. PEP-1-FK506BP inhibits alkali burn-induced corneal inflammation on the rat model of corneal alkali injury vol.48, pp.11, 2015, https://doi.org/10.5483/BMBRep.2015.48.11.041
  2. Apoptosis and non-alcoholic fatty liver diseases vol.24, pp.25, 2018, https://doi.org/10.3748/wjg.v24.i25.2661