References
- Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H. and Kim, V. N. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060. https://doi.org/10.1038/sj.emboj.7600385
- Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S. and Kim, V. N. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419. https://doi.org/10.1038/nature01957
- Krol, J., Loedige, I. and Filipowicz, W. (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597-610.
- Voinnet, O. (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669-687. https://doi.org/10.1016/j.cell.2009.01.046
- Shin, C. (2008) Cleavage of the star strand facilitates assembly of some microRNAs into Ago2-containing silencing complexes in mammals. Mol. Cells 26, 308-313.
- Huntzinger, E. and Izaurralde, E. (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99-110. https://doi.org/10.1038/nrg2936
- Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. and Bartel, D. P. (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66-71. https://doi.org/10.1038/nature13007
- Bazzini, A. A., Lee, M. T. and Giraldez, A. J. (2012) Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish. Science 336, 233-237. https://doi.org/10.1126/science.1215704
- Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M. and Benning, C. (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170-180. https://doi.org/10.1093/emboj/17.1.170
- Ender, C. and Meister, G. (2010) Argonaute proteins at a glance. J. Cell Sci. 123, 1819-1823. https://doi.org/10.1242/jcs.055210
- Cerutti, L., Mian, N. and Bateman, A. (2000) Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends. Biochem. Sci. 25, 481-482. https://doi.org/10.1016/S0968-0004(00)01641-8
- Yan, K. S., Yan, S., Farooq, A., Han, A., Zeng, L. and Zhou, M. M. (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426, 468-474. https://doi.org/10.1038/nature02129
- Lingel, A., Simon, B., Izaurralde, E. and Sattler, M. (2003) Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465-469. https://doi.org/10.1038/nature02123
- Song, J. J., Liu, J., Tolia, N. H., Schneiderman, J., Smith, S. K., Martienssen, R. A., Hannon, G. J. and Joshua-Tor, L. (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026-1032. https://doi.org/10.1038/nsb1016
- Wang, Y., Juranek, S., Li, H., Sheng, G., Wardle, G. S., Tuschl, T. and Patel, D. J. (2009) Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754-761. https://doi.org/10.1038/nature08434
- Song, J. J., Smith, S. K., Hannon, G. J. and Joshua-Tor, L. (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434-1437. https://doi.org/10.1126/science.1102514
- Wang, Y., Sheng, G., Juranek, S., Tuschl, T. and Patel, D. J. (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209-213. https://doi.org/10.1038/nature07315
- Jinek, M. and Doudna, J. A. (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405-412. https://doi.org/10.1038/nature07755
- Frank, F., Sonenberg, N. and Nagar, B. (2010) Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818-822. https://doi.org/10.1038/nature09039
- Boland, A., Huntzinger, E., Schmidt, S., Izaurralde, E. and Weichenrieder, O. (2011) Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proc. Natl. Acad. Sci. U. S. A. 108, 10466-10471. https://doi.org/10.1073/pnas.1103946108
- Nowotny, M., Gaidamakov, S. A., Crouch, R. J. and Yang, W. (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121, 1005-1016. https://doi.org/10.1016/j.cell.2005.04.024
- Katayanagi, K., Miyagawa, M., Matsushima, M., Ishikawa, M., Kanaya, S., Ikehara, M., Matsuzaki, T. and Morikawa, K. (1990) Three-dimensional structure of ribonuclease H from E. coli. Nature 347, 306-309. https://doi.org/10.1038/347306a0
- Rivas, F. V., Tolia, N. H., Song, J. J., Aragon, J. P., Liu, J., Hannon, G. J. and Joshua-Tor, L. (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 12, 340-349. https://doi.org/10.1038/nsmb918
- Nakanishi, K., Weinberg, D. E., Bartel, D. P. and Patel, D. J. (2012) Structure of yeast Argonaute with guide RNA. Nature 486, 368-374. https://doi.org/10.1038/nature11211
- Schurmann, N., Trabuco, L. G., Bender, C., Russell, R. B. and Grimm, D. (2013) Molecular dissection of human Argonaute proteins by DNA shuffling. Nat. Struct. Mol. Biol. 20, 818-826. https://doi.org/10.1038/nsmb.2607
- Faehnle, C. R., Elkayam, E., Haase, A. D., Hannon, G. J. and Joshua-Tor, L. (2013) The making of a slicer: activation of human Argonaute-1. Cell Reports 3, 1901-1909. https://doi.org/10.1016/j.celrep.2013.05.033
- Hauptmann, J., Dueck, A., Harlander, S., Pfaff, J., Merkl, R. and Meister, G. (2013) Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat. Struct. Mol. Biol. 20, 814-817. https://doi.org/10.1038/nsmb.2577
- Jones-Rhoades, M. W., Bartel, D. P. and Bartel, B. (2006) MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant. Biol. 57, 19-53. https://doi.org/10.1146/annurev.arplant.57.032905.105218
- Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B. and Bartel, D. P. (2002) Prediction of plant microRNA targets. Cell 110, 513-520. https://doi.org/10.1016/S0092-8674(02)00863-2
- Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M. and Weigel, D. (2005) Specific effects of MicroRNAs on the plant transcriptome. Dev. Cell 8, 517-527. https://doi.org/10.1016/j.devcel.2005.01.018
- Llave, C., Xie, Z., Kasschau, K. D. and Carrington, J. C. (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053-2056. https://doi.org/10.1126/science.1076311
- Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. and Sharp, P. A. (1999) Targeted mRNA degradation by double- stranded RNA in vitro. Genes Dev. 13, 3191-3197. https://doi.org/10.1101/gad.13.24.3191
- Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. and Axtell, M. J. (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758-762. https://doi.org/10.1016/j.cub.2008.04.042
- German, M. A., Pillay, M., Jeong, D. H., Hetawal, A., Luo, S., Janardhanan, P., Kannan, V., Rymarquis, L. A., Nobuta, K., German, R., De Paoli, E., Lu, C., Schroth, G., Meyers, B. C. and Green, P. J. (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol. 26, 941-946. https://doi.org/10.1038/nbt1417
- Gregory, B. D., O'Malley, R. C., Lister, R., Urich, M. A., Tonti-Filippini, J., Chen, H., Millar, A. H. and Ecker, J. R. (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev. Cell 14, 854-866. https://doi.org/10.1016/j.devcel.2008.04.005
- Li, Y. F., Zheng, Y., Addo-Quaye, C., Zhang, L., Saini, A., Jagadeeswaran, G., Axtell, M. J., Zhang, W. X. and Sunkar, R. (2010) Transcriptome-wide identification of microRNA targets in rice. Plant J. 62, 742-759. https://doi.org/10.1111/j.1365-313X.2010.04187.x
- Karlova, R., van Haarst, J. C., Maliepaard, C., van de Geest, H., Bovy, A. G., Lammers, M., Angenent, G. C. and de Maagd, R. A. (2013) Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J. Exp. Bot. 64, 1863-1878. https://doi.org/10.1093/jxb/ert049
- Pantaleo, V., Szittya, G., Moxon, S., Miozzi, L., Moulton, V., Dalmay, T. and Burgyan, J. (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 62, 960-976.
- Jeong, D. H., Schmidt, S. A., Rymarquis, L. A., Park, S., Ganssmann, M., German, M. A., Accerbi, M., Zhai, J., Fahlgren, N., Fox, S. E., Garvin, D. F., Mockler, T. C., Carrington, J. C., Meyers, B. C. and Green, P. J. (2013) Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon. Genome Biol. 14, R145. https://doi.org/10.1186/gb-2013-14-12-r145
- Yekta, S., Shih, I. H. and Bartel, D. P. (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594-596. https://doi.org/10.1126/science.1097434
- Shin, C., Nam, J. W., Farh, K. K., Chiang, H. R., Shkumatava, A. and Bartel, D. P. (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789-802. https://doi.org/10.1016/j.molcel.2010.06.005
- Karginov, F. V., Cheloufi, S., Chong, M. M., Stark, A., Smith, A. D. and Hannon, G. J. (2010) Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol. Cell 38, 781-788. https://doi.org/10.1016/j.molcel.2010.06.001
- Park, J. H., Ahn, S., Kim, S., Lee, J., Nam, J. W. and Shin, C. (2013) Degradome sequencing reveals an endogenous microRNA target in C. elegans. FEBS Letters 587, 964-969. https://doi.org/10.1016/j.febslet.2013.02.029
- Moran, Y., Fredman, D., Praher, D., Li, X. Z., Wee, L. M., Rentzsch, F., Zamore, P. D., Technau, U. and Seitz, H. (2014) Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res. 24, 651-663. https://doi.org/10.1101/gr.162503.113
- Moran, Y., Praher, D., Fredman, D. and Technau, U. (2013) The evolution of microRNA pathway protein components in Cnidaria. Mol. Biol. Evol. 30, 2541-2552. https://doi.org/10.1093/molbev/mst159
- Mercer, T. R., Dinger, M. E., Bracken, C. P., Kolle, G., Szubert, J. M., Korbie, D. J., Askarian-Amiri, M. E., Gardiner, B. B., Goodall, G. J., Grimmond, S. M. and Mattick, J. S. (2010) Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Res. 20, 1639-1650. https://doi.org/10.1101/gr.112128.110
- Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L. and Voinnet, O. (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185-1190. https://doi.org/10.1126/science.1159151
- Iwakawa, H. and Tomari, Y. (2013) Molecular Insights into microRNA-Mediated Translational Repression in Plants. Mol. Cell 52, 591-601. https://doi.org/10.1016/j.molcel.2013.10.033
- Aukerman, M. J. and Sakai, H. (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741. https://doi.org/10.1105/tpc.016238
- Bari, R., Datt Pant, B., Stitt, M. and Scheible, W. R. (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988-999. https://doi.org/10.1104/pp.106.079707
- Gandikota, M., Birkenbihl, R. P., Hohmann, S., Cardon, G. H., Saedler, H. and Huijser, P. (2007) The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 49, 683-693. https://doi.org/10.1111/j.1365-313X.2006.02983.x
Cited by
- Targeting Glial Mitochondrial Function for Protection from Cerebral Ischemia: Relevance, Mechanisms, and the Role of MicroRNAs vol.2016, 2016, https://doi.org/10.1155/2016/6032306
- MiR-106b promotes migration and invasion through enhancing EMT via downregulation of Smad 7 in Kazakh’s esophageal squamous cell carcinoma vol.37, pp.11, 2016, https://doi.org/10.1007/s13277-016-5338-x
- Role of microRNAs in obesity and obesity-related diseases vol.12, pp.1, 2017, https://doi.org/10.1186/s12263-017-0577-z
- MicroRNA and Pathogenesis of Enterovirus Infection vol.8, pp.1, 2016, https://doi.org/10.3390/v8010011
- MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction vol.172, 2017, https://doi.org/10.1016/j.pharmthera.2016.11.012
- MiR-203 Participates in Human Placental Angiogenesis by Inhibiting VEGFA and VEGFR2 Expression 2017, https://doi.org/10.1177/1933719117725817
- MicroRNA-421 inhibits breast cancer metastasis by targeting metastasis associated 1 vol.83, 2016, https://doi.org/10.1016/j.biopha.2016.08.058
- miRNA-133a attenuates lipid accumulation via TR4-CD36 pathway in macrophages vol.127, 2016, https://doi.org/10.1016/j.biochi.2016.04.012
- Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa vol.17, pp.1, 2016, https://doi.org/10.1186/s12864-016-3014-6
- The dynamics of a feed-forward loop depends on the regulator type in its indirect pathway vol.60, pp.2, 2015, https://doi.org/10.1134/S0006350915020062
- A Comprehensive Meta-Analysis of MicroRNAs for Predicting Colorectal Cancer vol.95, pp.9, 2016, https://doi.org/10.1097/MD.0000000000002738
- MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network vol.8, 2017, https://doi.org/10.3389/fpls.2017.00565
- Circulating hsa-miR-30e-5p, hsa-miR-92a-3p, and hsa-miR-223-3p may be novel biomarkers in systemic lupus erythematosus vol.88, pp.4, 2016, https://doi.org/10.1111/tan.12874
- Micro-RNA-1 is decreased by hypoxia and contributes to the development of pulmonary vascular remodeling via regulation of sphingosine kinase 1 vol.314, pp.3, 2018, https://doi.org/10.1152/ajplung.00057.2017
- miRNAs as Biomarkers for Diagnosis and Assessment of Prognosis of Coronary Artery Disease vol.08, pp.01, 2018, https://doi.org/10.4236/ojim.2018.81007
- The Interplay between the RNA Decay and Translation Machinery in Eukaryotes vol.10, pp.5, 2018, https://doi.org/10.1101/cshperspect.a032839
- MiR-320 regulates cardiomyocyte apoptosis induced by ischemia–reperfusion injury by targeting AKIP1 vol.23, pp.1, 2018, https://doi.org/10.1186/s11658-018-0105-1
- Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4897-1
- Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-27088-8
- Impact of miR-192 and miR-194 on cyst enlargement through EMT in autosomal dominant polycystic kidney disease vol.33, pp.2, 2019, https://doi.org/10.1096/fj.201800563RR