DOI QR코드

DOI QR Code

MoS2 첨가에 따른 Fe-Cr-Mn-C-V계 소결합금의 기계적 특성 평가

The Effects of MoS2 Addition on the Mechanical Properties of Fe-Cr-Mn-C-V P/M Alloy

  • 김건홍 (고등기술연구원 신소재공정센터) ;
  • 양현석 (고등기술연구원 신소재공정센터) ;
  • 공만식 (고등기술연구원 신소재공정센터)
  • Kim, Geon-Hong (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Yang, Hyun Seok (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Kong, Man-Sik (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE))
  • 투고 : 2014.08.05
  • 심사 : 2014.08.21
  • 발행 : 2014.08.28

초록

The connecting rod is one of the most important parts in automotive engines, transforming the reciprocal motion of a piston generated by internal combustion into the rotational motion of a crankshaft. Recent advances in high performance automobile engines demand corresponding technological breakthroughs in the materials for engine parts. In the present research, the powder metallurgy (P/M) process was used to replace conventional quenching and/or tempering processes for mass production and ultimately for more cost-efficient manufacturing of high strength connecting rods. The development of P/M alloy powder was undertaken not only to achieve the improvement in mechanical properties, but also to enhance the machinability of the P/M processed connecting rods. Specifically $MoS_2$ powders were added as lubricants to non-normalizing Fe-Cr-Mn-V-C alloy powder to improve the post-sintering machinability. The effects of $MoS_2$ addition on the microstructure, mechanical properties, and machining characteristics were investigated.

키워드

참고문헌

  1. Y. S. Kim, T. U. Hyun and J. B. Ha: KSAE, 15 (1993) 14.
  2. S. A. Parsons and D. V. Edmonds: Mater. Sci. Technol., 11 (1987) 894.
  3. Randall M. German: Powder metallurgy & particulate materials processing, Metal powder industries federation, New Jersey (2005) 41.
  4. 박현달: 분말야금기술회보, 2-2 (2011) 1.
  5. 박준: 분말야금기술회보, 2-1 (2011) 1.
  6. M. W. Wu, L. C. Tsao, G. J. Shu and B. H. Lin: Mater. Sci. Eng. A, 538 (2012) 135. https://doi.org/10.1016/j.msea.2011.12.113
  7. K. B. Kim, S. S. Yang, Y, J, Kim and Y. H. Park: J. Kor. Powd. Met. Inst., 20 (2013) 7. https://doi.org/10.4150/KPMI.2013.20.1.007
  8. D. Shanmugasundaram and R. Chandramouli: Mater. Design, 30 (2009) 3444. https://doi.org/10.1016/j.matdes.2009.03.020
  9. S.-X. Chen, Y. Feng, S. Li and Y.-J. Xie: J. Mater. Sci. Eng., 2 (2008) 7.
  10. Y. Wu, F. Wang, Y. Cheng and N. Chen: Wear, 205 (1997) 64. https://doi.org/10.1016/S0043-1648(96)07299-7
  11. Xiong and S. Dang: Wear, 251 (2001) 1094. https://doi.org/10.1016/S0043-1648(01)00803-1
  12. N. Wei, S. Ronglu and W. L. Yi: Friction and Wear Research, 2 (2014) 1.
  13. Schade, Christopher, Murphy, Thomas, Lawley, Alan and Doherty: Int. J. Powder Metall., 49 (2013) 9.
  14. Hu, Bo, Alexander Klekovkin, Dave Milligan, Ulf Engstrom, Sigurd Berg and Barbara Maroli: Adv. Powder. Metall. Part. Mater., 2 (2004) 7.
  15. Northwestern University: USA, US 8,016,954 (2011).
  16. M. C. Kang, Y. H. Jung, J. S. Kim, S. J. Moon and K. K. Kim: Trans. Kor. Soc. Mech. Eng., A26 (2002) 1053.