DOI QR코드

DOI QR Code

Production of Porous Metallic Glass Granule by Optimizing Chemical Processing

  • Kim, Song-Yi (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Guem, Bo-Kyung (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Lee, Min-Ha (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Taek-Soo (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Eckert, Jurgen (IFW Dresden, Institut fur Komplexe Materialien) ;
  • Kim, Bum-Sung (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
  • Received : 2014.07.15
  • Accepted : 2014.08.19
  • Published : 2014.08.28

Abstract

In this study, we optimized dissolution the dissolution conditions of porous amorphous powder to have high specific surface area. Porous metallic glass(MG) granules were fabricated by selective phase dissolution, in which brass is removed from a composite powder consisting of MG and 40 vol.% brass. Dissolution was achieved through various concentrations of $H_2SO_4$ and $HNO_3$, with $HNO_3$ proving to have the faster reaction kinetics. Porous powders were analyzed by differential scanning calorimetry to observe crystallization behavior. The Microstructure of milled powder and dissolved powder was analyzed by scanning electron microscope. To check for residual in the dissolved powder after dissolution, energy dispersive X-ray spectroscory and elemental mapping was conducted. It was confirmed that the MG/brass composite powder dissolved in 10% $HNO_3$ produced a porous MG granule with a relatively high specific surface area of $19.60m^2/g$. This proved to be the optimum dissolution condition in which both a porous internal granule structure and amorphous phase were maintained. Consequently, porous MG granules were effectively fabricated and applications of such structures can be expanded.

Keywords

References

  1. A. H. Brothers, R. Scheunemann, J. D. DeFouw and D. C. Dunand: Scripta Mater., 52 (2005) 335. https://doi.org/10.1016/j.scriptamat.2004.10.002
  2. M. H. Lee and D. J. Sordelet: Scripta Mater., 55 (2006) 947. https://doi.org/10.1016/j.scriptamat.2006.07.024
  3. J. Erlebacher and K. Sieradzki: Scripta Mater., 49 (2003) 991. https://doi.org/10.1016/S1359-6462(03)00471-8
  4. H. A. Bruck, T. Christman, A. J. Rosakis and W. L. Johnson: Scr Metall Mater., 30 (1994) 429. https://doi.org/10.1016/0956-716X(94)90598-3
  5. J. S Kim, M. H. Lee, D. H. Kim, U. Kuhn and J. Eckert: J. Rev Metal., 109 (2012) 11. https://doi.org/10.1051/metal/2012005
  6. C. J. Gilbert, R. O. Ritchie and W. L. Johnson: Appl Phys Lett., 71 (1997) 476. https://doi.org/10.1063/1.119610
  7. A. Inoue: Acta Mater., 48 (2000) 279. https://doi.org/10.1016/S1359-6454(99)00300-6
  8. P. S. Liu and K. M. Liang: J. Mater Sci., 36 (2001) 5059. https://doi.org/10.1023/A:1012483920628
  9. S. Y. Yang, I. R. Hwang, Y. Kim, J. K. Kim, K. S, S. K. Jang and T. P. Russell: Adv Mater., 18 (2006) 709. https://doi.org/10.1002/adma.200501500
  10. T. Wade and A. Inoue: Mater Trans., 44 (2003) 2228. https://doi.org/10.2320/matertrans.44.2228
  11. T. Wade, A. Inoue and A. L. Greer: Appl Phys Lett., 86 (2005) 251.
  12. A. H. Brothers and D. C. Dunand: Appl Phys Lett., 84 (2004) 1108. https://doi.org/10.1063/1.1646467
  13. A. H. Brothers and D. C. Dunand: Adv Mater., 17 (2005) 484. https://doi.org/10.1002/adma.200400897
  14. J. K. Lee, D. H. Bae, S. Yi, W. T. Kim and D. H. Kim: J Non-Cryst Solids., 333 (2004) 212. https://doi.org/10.1016/j.jnoncrysol.2003.10.011
  15. S. Y. Kim, B. K. Guem, M. H. Lee and B. S Kim: J Kor Powd Met Inst., 20 (2013) 36 (Korean).
  16. D. H. Bae, M. H. Lee, D. H. Kim and D. J. Sordelet: Appl Phys Lett., 83 (2003) 2312. https://doi.org/10.1063/1.1611622
  17. J. Y. Kim, S. Scudino, U. Kuhn, B. S. Kim and M. H. Lee, J. Eckert: Metals., 2 (2012) 79. https://doi.org/10.3390/met2020079