DOI QR코드

DOI QR Code

Effect of Schmidt Number on Cohesive and Non-cohesive Sediment Suspension Modeling

점착성, 비점착성 부유사 모형에 대한 Schmidt 수의 영향

  • Byun, Ji-Sun (Dept. of Civil Eng., Chungnam National Univ.) ;
  • Son, Minwoo (Dept. of Civil Eng., Chungnam National Univ.)
  • 변지선 (충남대학교 공과대학 토목공학과) ;
  • 손민우 (충남대학교 공과대학 토목공학과)
  • Received : 2014.06.11
  • Accepted : 2014.07.21
  • Published : 2014.08.31

Abstract

This study aims to investigating the effect of Schmidt number (${\sigma}_c$) on sediment suspension and hydrodynamics calculation. The range of ${\sigma}_c$ is also studied based on the flux Richardson number ($Ri_f$) and gradient Richardson number ($Ri_g$). Numerical experiments are carried out by 1 dimensional vertical model. Both cohesive and non-cohesive sediments are tested under the conditions of pure current and oscillatory flow. The turbulence damping effect due to sediment suspension is examined considering ${\sigma}_c$ as a constant for the damping effect. The results of this study show the consistent effect of ${\sigma}_c$ on sediment suspension regardless of hydrodynamic condition. It is also found that the model overestimates the flow velocity and turbulent kinetic energy when the damping effect is not considered. Under the conditions of $Ri_f$ and $Ri_g$ causing density stratification, it is known that the vertical mixing of sediment is reasonably calculated in the range of ${\sigma}_c$ from 0.3 to 0.5.

본 연구는 Schmidt 수(${\sigma}_c$)에 따른 부유사의 부유 거동 변화 및 흐름 특성의 변화를 살펴본 후, 그에 따라 계산된 성층 흐름의 척도가 되는 Flux Richardson 수($Ri_f$)와 Gradient Richardson 수($Ri_g$)를 근거로 타당한 ${\sigma}_c$의 범위를 산정하는 것을 목적으로 수행되었다. 부유사의 종류를 점착성 유사와 비점착성 유사로 구분하였으며 진동 흐름과 흐름 조건을 가정하고 1차원 연직 수치 모형을 이용하여 수치 실험을 수행하였다. 이 과정에서 ${\sigma}_c$가 난류 감소효과와 관계되는 상수인 것에 근거하여 부유사의 존재로 인한 난류 감소효과 고려 여부에 따른 흐름 특성의 변화를 살펴보았다. 그 결과, 흐름 조건에 관계없이 ${\sigma}_c$의 크기에 따라 부유 거동이 일관된 경향을 나타내는 것이 확인 되었으며 난류 감소효과를 고려하지 않는 경우 유속 및 난류 에너지가 과대 산정 되는 결과가 나타났다. 부유로 인한 성층화 조건을 형성하는 $Ri_f$$Ri_g$의 범위에 기초하여 결과를 분석하고 ${\sigma}_c$가 0.3에서 0.5의 범위에 해당될 때 성층 흐름 내 유사의 수직 혼합이 유효하게 계산된다는 결론이 도출되었다.

Keywords

References

  1. Amoudry, L., Hsu, T.-J., and Liu, P.L.-F. (2005). "Schmidt number and near-bed boundary condition effects on a two-phase dilute sediment transport model." Journal of Geophysical Research, Vol. 110, No. C9, pp. C09003.
  2. Benoit, C.-R., and Beckers, J.-M. (2010). Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Elsevier.
  3. Celik, I., and Rodi, W. (1988). "Modeling suspended sediment transport in nonequilibrium situations." Journal of Hydraulic Engineering, Vol. 114, No. 10, pp. 1157-1191. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1157)
  4. Cellino, M. (1998). Experimental study of suspension flowin open channels. Ph.D. dissertation, Ecole Polytechnique Federale de Lausanne, France.
  5. Cellino, M., and Graf, W. (1999). "Sediment-laden flow in open-channels under non-capacity and capacity conditions." Journal of Hydraulic Engineering, Vol. 125, No. 5, pp. 455-462. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:5(455)
  6. Galland, J.-C., Laurence, D., and Teisson, C. (1997). Simulating turbulent vertical exchange of mud with a Reynolds stress model. Proceedings of the 4th Nearshore and Estuarine Cohesive Sediment Transport Conference INTERCO'94, JohnWiley & Sons, allingford, UK, ed. T.N. Burt, W.R. Parker and J. Watts, pp. 439-448.
  7. Howard, L.N. (1961). "Note on a paper by J.W.Miles." Journal of Fluid Mechanics, Vol. 10, pp. 509-512 https://doi.org/10.1017/S0022112061000317
  8. Hsu, T.-J., and Hanes, M. (2004). "Effects of wave shape on sheet flowsediment transport." Journal ofGeophysical Research, Vol. 109, No. C5, pp. C05025.
  9. Khelifa, A., and Hill, P.S. (2006). "Models for effective density and settling velocity of flocs." Journal of Hydraulics Research, Vol. 44, No. 3, pp. 390-401. https://doi.org/10.1080/00221686.2006.9521690
  10. Kranenburg, C. (1994). "The fractal structure of cohesive sediment aggregates." Estuarine Coastal Shlef Science, Vol. 39, No. 6, pp. 451-460. https://doi.org/10.1016/S0272-7714(06)80002-8
  11. Kundu, P.K. (1990). Fluid Mechanics. Academic Press, San Diego.
  12. LEES, B.J. (1981). "Relationship between eddy viscosity of seawater and eddy diffusivity of suspended particles." Geo-Marine Letters, Vol. 1, No. 3-4, pp. 249-254. https://doi.org/10.1007/BF02462442
  13. Miles, J.W. (1961). "On the stability of heterogeneous shear flows." Journal of Fluid Mechanics, Vol. 10, No. 4, pp. 496-508. https://doi.org/10.1017/S0022112061000305
  14. Olsen, N.B., and Stokseth, S. (1995). "Three-dimensional numerical modeling of water flow in a river with large bed roughness." Journal of Hydraulic Research, Vol. 33, No. 4, pp. 571-581. https://doi.org/10.1080/00221689509498662
  15. Ribberink, J.S., and Al-Salem, A. (1995). "Sheet flow and suspension of sand in oscillatory boundary layers." Coastal Engineering, Vol. 25, No. 3, pp. 205-225. https://doi.org/10.1016/0378-3839(95)00003-T
  16. Son, M. (2009). Flocculation and transport of cohesive sediment. Ph.D. dissertation, University of Florida, Gainesville, Florida, United States.
  17. Son, M., and Hsu, T.-J. (2008). "Flocculation model of cohesive sediment using variable fractal dimension." Environmental Fluid Mechanics, Vol. 8, No. 1, pp. 55-71. https://doi.org/10.1007/s10652-007-9050-7
  18. Son, M., and Hsu, T.-J. (2009). "The effect of variable yield strength and variable fractal dimension on flocculation of cohesive sediment." Water Research, Vol. 43, No. 14, pp. 3582-3592. https://doi.org/10.1016/j.watres.2009.05.016
  19. Son, M., and Hsu, T.-J. (2011a). "The effects of flocculation and bed erodibility on modeling cohesive sediment resuspension." Journal of Geophysical Research, Vol. 116, No. C3, pp. C03021.
  20. Son, M., and Hsu. T.-J. (2011b). "Idealized study on cohesive sediment flux by tidal asymmetry." Envronmental Fluid Mechanics, Vol. 11, No. 2, pp. 183-202. https://doi.org/10.1007/s10652-010-9193-9
  21. Son, M., and Lee, G.-h. (2013). "On effects of skewed and asymmetric oscillatory flows on cohesive sediment flux: Numerical study."Water Resources Research, Vol. 49, No. 7, pp. 4409-4423. https://doi.org/10.1002/wrcr.20365
  22. Tennekes, H., and Lumley, J.L. (1994). A first course in turbulence, The MIT press.
  23. Thrope, S.A. (1971). "Experiment on the instability of stratified shear flows: Miscible fluids." Journal of Fluid Mechanics, Vol. 46, No. 2, pp. 299-319. https://doi.org/10.1017/S0022112071000557
  24. Toorman, E. (2003). Validation of macroscopic modeling of particle-laden turbulent flows. Proceedings 6th Belgian National Congress on Theoretical and Applied Mechanics, Gent.
  25. Turner, J.S. (1973). Buoyancy Effects in Fluids, Cambridge University Press.
  26. Van Rijn, L.C. (1984). "Sediment transport, Part II: Suspended load transport." Journal of Hydraulic Engineering, Vol. 110, No. 11, pp. 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
  27. Van Rijn, L.C. (2007). "Unified View of Sediment Transport by current and waves. II: Suspended Transport." Journal of Hydraulic Engineering, Vol. 133, No. 6, pp. 668-689. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(668)
  28. Wilcox, D.C. (1988). "Reassessment of the scale determining equation for advanced turbulence models." American Institute of Aeronautics and Astronautics Journal, Vol. 26 No. 11, pp. 1299-1310. https://doi.org/10.2514/3.10041
  29. Winterwerp, J.C. (1998). "A simple model for turbulence induced flocculation of cohesive sediment." Journal of Hydraulic Research, Vol. 36, No. 3, pp. 309-326. https://doi.org/10.1080/00221689809498621
  30. Winterwerp, J.C. (2001). "Stratification effects by cohesive and noncohesive sediment." Journal of Geophysical Research, Vol. 106, No. C10, pp. 22559-22574. https://doi.org/10.1029/2000JC000435
  31. Winterwerp, J.C. (2002). "On the flocculation and settling velocity of estuarine mud." Continental Shelf Research, Vol. 22, No. 9, pp. 1339-1360. https://doi.org/10.1016/S0278-4343(02)00010-9
  32. Winterwerp, J.C. (2006). "Stratification effects by fine suspended sediment at low, medium, and very high concentrations." Journal of Geophysical Research, Vol. 111, No. C5, pp. C05012.
  33. Winterwerp, J.C., and van Kesternen, W.G.M. (2004). Introduction to the physics of cohesive sediment in the marine environment. Elsevier.
  34. Wu, W., Rodi, W., and Wenka, T. (2000). "3D Numerical Modeling of Flow and Sediment Transport in Open Channels." Journal ofHydraulic Engineering, Vol. 126, No. 1, pp. 4-15. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:1(4)
  35. Yang, C-T. (2003). Sediment transport theory and practice. McGraw-Hill.
  36. Yoon, J.-Y., and Kang, S.-K. (2005). "A numerical model of sediment-laden turbulent flow in an open channel." Canadian Journal of Civil Engineering, Vol. 32, No. 1, pp. 233-240. https://doi.org/10.1139/l04-089