DOI QR코드

DOI QR Code

Intercomparison of Change Point Analysis Methods for Identification of Inhomogeneity in Rainfall Series and Applications

강우자료의 비동질성 규명을 위한 변동점 분석기법의 상호비교 및 적용

  • Lee, Sangho (Department of Civil Engineering, Pukyoung National University) ;
  • Kim, Sang Ug (Department of Civil Engineering, Kangwon National University) ;
  • Lee, Yeong Seob (Department of Civil Engineering, Kangwon National University) ;
  • Sung, Jang Hyun (Ministry of Land, Infrastructure and Transport)
  • 이상호 (부경대학교 공과대학 토목공학과) ;
  • 김상욱 (강원대학교 공과대학 토목공학과) ;
  • 이영섭 (강원대학교 공과대학 토목공학과) ;
  • 성장현 (국토교통부 영산강홍수통제소)
  • Received : 2014.01.02
  • Accepted : 2014.03.12
  • Published : 2014.08.31

Abstract

Change point analysis is a efficient tool to understand the fundamental information in hydro-meteorological data such as rainfall, discharge, temperature etc. Especially, this fundamental information to change points to future rainfall data identified by reasonable detection skills can affect the prediction of flood and drought occurrence because well detected change points provide a key to resolve the non-stationary or inhomogeneous problem by climate change. Therefore, in this study, the comparative study to assess the performance of the 3 change point detection skills, cumulative sum (CUSUM) method, Bayesian change point (BCP) method, and segmentation by dynamic programming (DP) was performed. After assessment of the performance of the proposed detection skills using the 3 types of the synthetic series, the 2 reasonable detection skills were applied to the observed and future rainfall data at the 5 rainfall gauges in South Korea. Finally, it was suggested that BCP (with 0.9 posterior probability) could be best detection skill and DP could be reasonably recommended through the comparative study. Also it was suggested that BCP (with 0.9 posterior probability) and DP detection skills to find some change points could be reasonable at the North-eastern part in South Korea. In future, the results in this study can be efficiently used to resolve the non-stationary problems in hydrological modeling considering inhomogeneity or nonstationarity.

변동점 분석은 강우, 유량, 온도 등의 수문기상자료의 기초적인 정보를 이해함에 있어 유용한 수단으로 활용될 수 있다. 특히 합리적인 방법으로 분석된 미래 강우량에 대한 변동점 분석 결과는 최근 기후변화로 인해 발생되는 홍수나 가뭄과 같은 수문현상을 예측하는 데 있어 문제가 되는 비동질성 또는 비정상성 요인을 해결하는 데 있어 중요하게 활용될 수 있다. 따라서 본 연구에서는 변동성 분석을 위해 이용되는 3가지의 이론(CUSUM, BCP, DP)을 소개함과 함께 3가지 기법들의 특성을 알아보기 위한 상호비교 연구를 수행하였다. 3가지 종류의 합성 모의 강우자료의 생성을 통해 3가지 기법들을 수행한 뒤 그 결과를 특정 성능평가 절차를 거쳐 평가하였으며, 그 중 2가지 기법을 국내 관측 강우자료 및 미래 강우자료의 변동점 분석에 적용하고 그 결과를 제시하였다. 기법 간 비교를 통해 BCP 0.9가 가장 우수한 탐색능력이 있는 것으로 분석되었으며, DP 또한 합리적으로 사용될 수 있을 것으로 판단되었다. 향후 이와 같은 강우자료에 대한 변동점 분석에 관한 연구는 비동질성이나 비정상성을 고려하여 수문모형을 구축하는 연구 등에 있어 효율적으로 사용될 수 있다.

Keywords

References

  1. Abdul Aziz, O.I., and Burn, D.H.T (2006). "Trends and variability in the hydrological regime of the Mackenzie River Basin." Journal of hydrology, Vol. 319, pp. 282-294. https://doi.org/10.1016/j.jhydrol.2005.06.039
  2. Aksoy, H., Gedikli, A., Unal, N.E., and Kehagias, A. (2008). "Fast segmentation algorithms for long hydrometeorological time series." Hydrological Proccesses, Vol. 22, No. 23, pp. 4600-4608. https://doi.org/10.1002/hyp.7064
  3. Barry, D., and Hartigan, J.A. (1992). "Product partition models for change point problems." The Annals of Statistics, Vol. 20, No. 1, pp. 260-279. https://doi.org/10.1214/aos/1176348521
  4. Barry, D., and Hartigan, J.A. (1993). "A Bayesian analysis for change point problems." Journal of the American Statistical Association, Vol. 88, No. 421, pp. 309-319.
  5. Beaulieu, C., Seidou, O., Ouarda, B.M.J., and Zhang, X. (2009). "Intercomparison of homogenization techniques for precipitation data continued: Comparison of two recent Bayesian change point models."Water Resources Research, Vol. 45, W08410.
  6. Burn, D.H. (1994). "Hydrologic effects of climatic change in West Central Canada." Journal of Hydrology, Vol. 160, pp. 53-70. https://doi.org/10.1016/0022-1694(94)90033-7
  7. Carlin, B.P., Gelfand, A.E., and Smith, A.F.M. (1992). "Hierarchical Bayesian analysis of changepoint problems." Applied Statistics, Vol. 41, No. 2, pp. 389-405. https://doi.org/10.2307/2347570
  8. Carslaw, D.C., Ropkins, K., and Bell, M.C. (2006). "Changepoint detection of gaseous and particulate trafficrelated pollutants at a roadside location." Environ. Sci. Technol. Vol. 40, No. 22, pp. 6912-6918. https://doi.org/10.1021/es060543u
  9. Chelani, A.B. (2011). "Change detection using CUSUM and modified CUSUM method in air pollutant concentrations at traffic site in Delhi." Stochastic Environmental Research and Risk Assessment, Vol. 25, pp. 827-834. https://doi.org/10.1007/s00477-010-0452-6
  10. Chib, S. (1998). "Estimation and comparison of multiple change-point models." Journal of Econometrics, Vol. 86, pp. 221-241. https://doi.org/10.1016/S0304-4076(97)00115-2
  11. Chowdhury, R.K., and Beecham, S. (2010). "Australian rainfall trends and their relation to the southern oscillation index." Hydrological Processes, Vol. 24, No. 4, pp. 504-514.
  12. Chu, H.J., Pan, T.Y., and Liou, J.J. (2012). "Change-point detection of long-duration extreme precipitation and the effect on hydrologic design: a case study of south Taiwan." Stochastic Environmental Research and Risk Assessment, Vol. 26, pp. 1123-1130. https://doi.org/10.1007/s00477-012-0566-0
  13. Dobigeon, N., and Tourneret, J.Y. (2007) "Joint segmentation of wind speed and direction using a hierarchical model." Comput. Statist. Data Anal., Vol. 51, pp. 5603-5621. https://doi.org/10.1016/j.csda.2007.04.016
  14. Domonkos, P. (2011). "Efficiency evaluation for detecting inhomogeneities by objective homogenization methods." Theoretical and Applied Climatology, Vol. 105, No. 3-4, pp. 455-467. https://doi.org/10.1007/s00704-011-0399-7
  15. Erdman, C., and Emerson, J.C. (2007). "bcp: an R package for performing a Bayesian analysis of change point problems." Journal of Statistical Software, Vol. 23, No. 3, pp. 1-13.
  16. Fearnhead, P. (2006). "Exact and efficient Bayesian inference for multiple change point problems." Statistics and Computing, Vol. 16, pp. 203-213. https://doi.org/10.1007/s11222-006-8450-8
  17. Fearnhead, P., and Liu, Z. (2011). "Efficient Bayesian analysis of multiple changpoint models with dependence across segments." Statistics and Computing, Vol. 21, pp. 217-229. https://doi.org/10.1007/s11222-009-9163-6
  18. Gedikli, A., Aksoy, H., and Unal, N.E. (2008). "Segmentation algorithm for long time series analysis." Stochastic Environmental Research and Risk Assessment, Vol. 22, pp. 291-302. https://doi.org/10.1007/s00477-007-0115-4
  19. Hirsch, R.M., Slack, J.R., and Smith, R.A. (1982). "Techniques of trend analysis for monthly water quality data." Water Resources Research, Vol. 18, pp. 107-121. https://doi.org/10.1029/WR018i001p00107
  20. Hwang, S.H., Kim, J.H., Yoo, C., and Jung, S.W. (2010). "A Probabilistic estimation of changing points of Seoul rainfall using BH Bayesian analysis." Journal of Korea Water Resources Association, Vol. 43, No. 7, pp. 645-655 (In Korean). https://doi.org/10.3741/JKWRA.2010.43.7.645
  21. Kampata, J.M., Parida, B.P., and Moalafhi, D.B. (2008). "Trend analysis of rainfall in the headstreams of the Zambezi river basin in Zambia." Phys. Chem. Earth, Vol. 33, pp. 621-625. https://doi.org/10.1016/j.pce.2008.06.012
  22. Kehagias, A., Nidelkou, E., and Petridis, V. (2006). "A dynamic programming segmentation procedure for hydrological and environmental time series." Stochastic Environmental Research and Risk Assessment, Vol. 20, pp. 77-94. https://doi.org/10.1007/s00477-005-0013-6
  23. Kim, J., and Cheon, S. (2010). "Bayesian multiple changepoint estimation with annealing stochastic approximation Monte Carlo." Computational Statstics, Vol. 25, pp. 215-239. https://doi.org/10.1007/s00180-009-0172-x
  24. Kim, C., Suh, M.S., and Hong, K.O. (2009). "Bayesian changepoint analysis of the annual maximum of daily and subdaily precipitation over South Korea." Journal of Climate, Vol. 15, pp. 6741-6757.
  25. Li, Z.L., Xu, Z.X, Li, J.Y., and Li, Z.J. (2008). "Shift trend and step changes for runoff time series in the Shiyang River basin, northwest China." Hydrological Processes, Vol. 22, No. 23, pp. 4639-4646. https://doi.org/10.1002/hyp.7127
  26. Page, E.S. (1954). "Continuous inspection scheme." Biometrika, Vol. 41, pp. 100-115. https://doi.org/10.1093/biomet/41.1-2.100
  27. Yao, Y.C. (1984). "Estimation of a noisy discrete-time step function: Bayes and empirical Bayes approaches." The Annals of Statistics, Vol. 12, No. 4, pp. 1434-1447. https://doi.org/10.1214/aos/1176346802