DOI QR코드

DOI QR Code

Constitutive model coupled with damage for carbon manganese steel in low cycle fatigue

  • Received : 2014.02.03
  • Accepted : 2014.07.01
  • Published : 2014.08.25

Abstract

Carbon-manganese steel A42 (French standards) is used in steam generator pipes of nuclear center and subject to low cycle fatigue (LCF) loads. In order to obtain the material LCF behavior, the tests are implemented in a hydraulic fatigue machine. The LCF plastic deformation and cyclic stress in macroscope have been influenced by the accumulated low cycle fatigue damage. The constitutive kinematic and isotropic hardening modeling is modified with coupling fatigue damage to describe the fatigue behavior. The improved model seems to be good agreement with the test results.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of China

References

  1. Armstrong, P.J. and Frederick, C.O. (1966), "A mathematical representation of the multiaxial bauscinger effect", CEGB Report No. RD/B/N 731.
  2. Chaboche, J.L. (1987), "Continuum damage mechanics: Present state and future trends", Nucl. Eng. Des., 105(1), 19-33. https://doi.org/10.1016/0029-5493(87)90225-1
  3. Chaboche, J.L. (2008), "A review of some plasticity and viscoplasticity constitutive theories", Int. J. Plast., 24(10), 247-302.
  4. Chaboche, J.L., Kaminski, M. and Kanoute, P. (2009), "Extension and application of a non-linear fatigue damage accumulation rule for variable amplitude loading programs", Deutscher Verband fur Materialforschung und prufung e.V., pp. 627-639.
  5. Chopra, O.K. and Shack, W.J. (2002), "Review of the margins for ASME code fatigue design curve - Effects of surface roughness and material variability", Report of Argonne National Laboratory, Argonne National Laboratory, Lemont, IL, USA.
  6. Huang, Z.Y., Wagner, D., Bathias, C. and Chaboche, J.- L. (2011), "Cumulative fatigue damage in low cycle fatigue and gigacycle fatigue for low carbon-manganese steel", Int. J. Fatigue., 33(2), 115-121. https://doi.org/10.1016/j.ijfatigue.2010.07.008
  7. Kobayashi, M. and Ohno, N. (2002), "Implementation of cyclic plasticity models based on a general form of kinematic hardening", Int. J. Numer. Meth. Eng., 53(9), 2217-2238. https://doi.org/10.1002/nme.384
  8. Le Duff, J.A., Lehericy, Y., Lefrancois, A. and Mendez, J. (2009), "Effects of surface finish and LCF pre-damage on the HCF endurance limits of A 304L austenitic stainless steel", Deutscher Verband fur Materialforschung und prufung e.V., Berlin, German, May.
  9. Lemaitre, J. and Chaboche, J.-L. (1990), Mechanics of Solid Materials, Cambridge University Press, Cambridge, UK.
  10. Liakat, M. and Khonsari, M.M. (2014), "An experimental approach to estimate damage and remaining life of metals under uniaxial fatigue loading", Mater. Des, 57, 289-297. https://doi.org/10.1016/j.matdes.2013.12.027
  11. Ohno, N., Tsuda, M. and Kamei, T. (2013), "Elastoplastic implicit integration algorithm applicable to both plane stress and three-dimensional stress states", Finite. Elem. Anal. Des., 66, 1-11. https://doi.org/10.1016/j.finel.2012.11.001
  12. Rabotnov, Y.N. (1969), Creep Problems in Structural Members, North Holland Publishing Comp., London, UK.
  13. Simo, J.C. and Taylor, R.L. (1985), "Consistent tangent operators for rate-independent elsatoplasticity", Meth. Appl. Mech. Eng., 48(1), 101-118. https://doi.org/10.1016/0045-7825(85)90070-2
  14. Yu, D., Chen G., Yu W., Li D. and Chen X. (2012), "Visco-plastic constitutive modeling on Ohno-Wang kinematic hardening rule for uniaxial ratcheting behavior of Z2CND18.12N steel", Int. J. Plast., 28(1), 88-101. https://doi.org/10.1016/j.ijplas.2011.06.001

Cited by

  1. Local ratcheting behavior in notched 1045 steel plates vol.28, pp.1, 2014, https://doi.org/10.12989/scs.2018.28.1.001
  2. Rapid S-N type life estimation for low cycle fatigue of high-strength steels at a low ambient temperature vol.33, pp.6, 2014, https://doi.org/10.12989/scs.2019.33.6.777