DOI QR코드

DOI QR Code

Investigation on low velocity impact on a foam core composite sandwich panel

  • Xie, Zonghong (School of Astronautics, Northwestern Polytechnical University) ;
  • Yan, Qun (School of Astronautics, Northwestern Polytechnical University) ;
  • Li, Xiang (School of Astronautics, Northwestern Polytechnical University)
  • Received : 2014.02.02
  • Accepted : 2014.06.06
  • Published : 2014.08.25

Abstract

A finite element model with the consideration of damage initiation and evolution has been developed for the analysis of the dynamic response of a composite sandwich panel subject to low velocity impact. Typical damage modes including fiber breakage, matrix crushing and cracking, delamination and core crushing are considered in this model. Strain-based Hashin failure criteria with stiffness degradation mechanism are used in predicting the initiation and evolution of intra-laminar damage modes by self-developed VUMAT subroutine. Zero-thickness cohesive elements are adopted along the interface regions between the facesheets and the foam core to simulate the initiation and propagation of delamination. A crushable foam core model with volumetric hardening rule is used to simulate the mechanical behavior of foam core material at the plastic state. The time history curves of contact force and the core collapse area are obtained. They all show a good correlation with the experimental data.

Keywords

References

  1. ABAQUS (2007), "ABAQUS Version 6.7", Dessault Systems; Providence, RI, USA.
  2. Anderson, T. and Madenci, E. (2000), "Experimental investigation of low velocity impact characteristics of sandwich composites", Compos. Struct., 50(3), 239-247. https://doi.org/10.1016/S0263-8223(00)00098-2
  3. Benzeggagh, M.L. and Kenane, M. (1996), "Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus", Compos. Sci. Tech., 56(4), 439-449. https://doi.org/10.1016/0266-3538(96)00005-X
  4. Camanho, P.P. (2002), "Mixed-mode decohesion finite elements for the simulation of delamination in composite materials", NASA-Technical Paper 211737, National Aeronautics and Space Agency, USA.
  5. Chakrabarty, J. (2006), Theory of Plasticity, Butterworth-Heinemann Ltd., Oxford, UK.
  6. Chang, F.K. (1987), "A progressive damage model for laminated composites containing stress concentrations", J. Compos. Mater., 21(9), 834-855. https://doi.org/10.1177/002199838702100904
  7. Cui, W., Wisnom, M.R. and Jones, M. (1992), "A comparison of failure criteria to predict delamination of unidirectional Glass/Epoxy specimens waisted through the thickness", Compos., 23(3), 158-166. https://doi.org/10.1016/0010-4361(92)90436-X
  8. D'Alessandro V., Petrone G., Rosa S. and Franco F. (2014), "Modelling of aluminium foam sandwich panels", Smart Struct. Syst., Int. J., 13(4), 615-636. https://doi.org/10.12989/sss.2014.13.4.615
  9. Deshpande, V.S. and Fleck, N.A. (2000), "Isotropic constitutive models for metallic foams", JI. Mech. Phys. Solid., 48(6), 1253-1283. https://doi.org/10.1016/S0022-5096(99)00082-4
  10. Faggiani, A. and Falzon, B.G. (2010), "Predicting low-velocity impact damage on a stiffened composite panel", Compos.: Part A, 41(6), 737-749. https://doi.org/10.1016/j.compositesa.2010.02.005
  11. Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J. Appl. Mech., 47(2), 329-334. https://doi.org/10.1115/1.3153664
  12. Hazizan, M.A. and Cantwell, W.J. (2003), "The low velocity impact response of an aluminum honeycomb sandwich structure", Compos.: Part B, 34(8), 679-687. https://doi.org/10.1016/S1359-8368(03)00089-1
  13. Kachanov, L.M. (1987), Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publishers, Boston, MA, USA.
  14. Kelly, N., McGarry, J.P. (2012), "Experimental and numerical characterization of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue", J. Mech. Behavior Biomed. Mater., 9, 184-197. https://doi.org/10.1016/j.jmbbm.2011.11.013
  15. Lacy, T.E. and Hwang, Y. (2003), "Numerical modeling of impact-damaged sandwich composites subjected to compression-after-impact loading", Compos. Struct., 61(1), 115-128. https://doi.org/10.1016/S0263-8223(03)00034-5
  16. Li, Q.M., Mines, R.A.W. and Birch, R.S. (2000), "The crush behavior of Rohacell 51WF structural foam", Int. J. Solid. Struct., 37(43), 6321-6341. https://doi.org/10.1016/S0020-7683(99)00277-2
  17. Lubliner, J. (2008), Plasticity Theory, Dover Publications Inc., New York, NY, USA.
  18. Matzenmiller, A., Lubliner, J. and Taylor, R.L. (1995), "A constitutive model for anisotropic damage in fiber- composites", Mech. Mater., 20(2), 125-152. https://doi.org/10.1016/0167-6636(94)00053-0
  19. Mostafa, A., Shankar, K. and Morozov, E.V. (2013), "Insight into the shear behavior of composite sandwich panels with foam core", Mater. Des., 50, 92-101. https://doi.org/10.1016/j.matdes.2013.03.016
  20. Park, J.H., Ha, S.K., Kang, K.W., Kim, C.W. and Kim, H.S. (2008), "Impact damage resistance of sandwich structures subjected to low velocity impact", J. Mater. Process. Tech., 201(1), 425-430. https://doi.org/10.1016/j.jmatprotec.2007.11.196
  21. Rao, H., Xu, X.W., Zhu, W.Y. and Zhang, C. (2013), "Numerical simulation of low velocity impact damage on stiffened composite panels", Acta Materiae Compositae Sinca, 30(4), 211-218.
  22. Rice, J.R. (1968), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35(2), 379-386. https://doi.org/10.1115/1.3601206
  23. Rizov, V.I. (2006), "Non-linear indentation behavior of foam core sandwich composites - A 2D approach", Computational materials science, 35(2), 107-115. https://doi.org/10.1016/j.commatsci.2005.02.009
  24. Turon, A., Davila, C.G., Camanho, P.P. and Costa, J. (2007), "An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models", Eng. Fracture Mech., 74(10), 1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025
  25. Yang, C., An, Y., Tort, M. and Hodgson, P.D. (2014), "Fabrication, modeling and evaluation of microstructured materials in a digital framework", Comput. Mater. Sci., 81, 89-97. https://doi.org/10.1016/j.commatsci.2013.05.033

Cited by

  1. Experimental study of anisotropic behavior of PU foam used in sandwich panels vol.20, pp.1, 2016, https://doi.org/10.12989/scs.2016.20.1.043
  2. Analytical solution of some delamination scenarios in thick structural sandwich plates 2017, https://doi.org/10.1177/1099636217714182
  3. Low-velocity impact behaviour of titanium honeycomb sandwich structures 2017, https://doi.org/10.1177/1099636217728421
  4. A numerical and theoretical investigation on composite pipe-in-pipe structure under impact vol.22, pp.5, 2014, https://doi.org/10.12989/scs.2016.22.5.1085
  5. Design of stepwise foam claddings subjected to air-blast based on Voronoi model vol.23, pp.1, 2014, https://doi.org/10.12989/scs.2017.23.1.107
  6. Steel processing effects on crash performance of vehicle safety related applications vol.24, pp.3, 2014, https://doi.org/10.12989/scs.2017.24.3.351
  7. Mechanical behavior of FRP confined steel tubular columns under impact vol.27, pp.6, 2014, https://doi.org/10.12989/scs.2018.27.6.691
  8. Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading vol.31, pp.2, 2014, https://doi.org/10.12989/scs.2019.31.2.133
  9. Effect of Foam’s Heterogeneity on the Behaviour of Sandwich Panels vol.29, pp.4, 2019, https://doi.org/10.2478/ceer-2019-0047
  10. Experimental estimation of the damping ratio of metallic foam sandwich panels with sand intrusions vol.23, pp.5, 2021, https://doi.org/10.21595/jve.2021.21812