References
- ABAQUS (2007), "ABAQUS Version 6.7", Dessault Systems; Providence, RI, USA.
- Anderson, T. and Madenci, E. (2000), "Experimental investigation of low velocity impact characteristics of sandwich composites", Compos. Struct., 50(3), 239-247. https://doi.org/10.1016/S0263-8223(00)00098-2
- Benzeggagh, M.L. and Kenane, M. (1996), "Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus", Compos. Sci. Tech., 56(4), 439-449. https://doi.org/10.1016/0266-3538(96)00005-X
- Camanho, P.P. (2002), "Mixed-mode decohesion finite elements for the simulation of delamination in composite materials", NASA-Technical Paper 211737, National Aeronautics and Space Agency, USA.
- Chakrabarty, J. (2006), Theory of Plasticity, Butterworth-Heinemann Ltd., Oxford, UK.
- Chang, F.K. (1987), "A progressive damage model for laminated composites containing stress concentrations", J. Compos. Mater., 21(9), 834-855. https://doi.org/10.1177/002199838702100904
- Cui, W., Wisnom, M.R. and Jones, M. (1992), "A comparison of failure criteria to predict delamination of unidirectional Glass/Epoxy specimens waisted through the thickness", Compos., 23(3), 158-166. https://doi.org/10.1016/0010-4361(92)90436-X
- D'Alessandro V., Petrone G., Rosa S. and Franco F. (2014), "Modelling of aluminium foam sandwich panels", Smart Struct. Syst., Int. J., 13(4), 615-636. https://doi.org/10.12989/sss.2014.13.4.615
- Deshpande, V.S. and Fleck, N.A. (2000), "Isotropic constitutive models for metallic foams", JI. Mech. Phys. Solid., 48(6), 1253-1283. https://doi.org/10.1016/S0022-5096(99)00082-4
- Faggiani, A. and Falzon, B.G. (2010), "Predicting low-velocity impact damage on a stiffened composite panel", Compos.: Part A, 41(6), 737-749. https://doi.org/10.1016/j.compositesa.2010.02.005
- Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J. Appl. Mech., 47(2), 329-334. https://doi.org/10.1115/1.3153664
- Hazizan, M.A. and Cantwell, W.J. (2003), "The low velocity impact response of an aluminum honeycomb sandwich structure", Compos.: Part B, 34(8), 679-687. https://doi.org/10.1016/S1359-8368(03)00089-1
- Kachanov, L.M. (1987), Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publishers, Boston, MA, USA.
- Kelly, N., McGarry, J.P. (2012), "Experimental and numerical characterization of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue", J. Mech. Behavior Biomed. Mater., 9, 184-197. https://doi.org/10.1016/j.jmbbm.2011.11.013
- Lacy, T.E. and Hwang, Y. (2003), "Numerical modeling of impact-damaged sandwich composites subjected to compression-after-impact loading", Compos. Struct., 61(1), 115-128. https://doi.org/10.1016/S0263-8223(03)00034-5
- Li, Q.M., Mines, R.A.W. and Birch, R.S. (2000), "The crush behavior of Rohacell 51WF structural foam", Int. J. Solid. Struct., 37(43), 6321-6341. https://doi.org/10.1016/S0020-7683(99)00277-2
- Lubliner, J. (2008), Plasticity Theory, Dover Publications Inc., New York, NY, USA.
- Matzenmiller, A., Lubliner, J. and Taylor, R.L. (1995), "A constitutive model for anisotropic damage in fiber- composites", Mech. Mater., 20(2), 125-152. https://doi.org/10.1016/0167-6636(94)00053-0
- Mostafa, A., Shankar, K. and Morozov, E.V. (2013), "Insight into the shear behavior of composite sandwich panels with foam core", Mater. Des., 50, 92-101. https://doi.org/10.1016/j.matdes.2013.03.016
- Park, J.H., Ha, S.K., Kang, K.W., Kim, C.W. and Kim, H.S. (2008), "Impact damage resistance of sandwich structures subjected to low velocity impact", J. Mater. Process. Tech., 201(1), 425-430. https://doi.org/10.1016/j.jmatprotec.2007.11.196
- Rao, H., Xu, X.W., Zhu, W.Y. and Zhang, C. (2013), "Numerical simulation of low velocity impact damage on stiffened composite panels", Acta Materiae Compositae Sinca, 30(4), 211-218.
- Rice, J.R. (1968), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35(2), 379-386. https://doi.org/10.1115/1.3601206
- Rizov, V.I. (2006), "Non-linear indentation behavior of foam core sandwich composites - A 2D approach", Computational materials science, 35(2), 107-115. https://doi.org/10.1016/j.commatsci.2005.02.009
- Turon, A., Davila, C.G., Camanho, P.P. and Costa, J. (2007), "An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models", Eng. Fracture Mech., 74(10), 1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025
- Yang, C., An, Y., Tort, M. and Hodgson, P.D. (2014), "Fabrication, modeling and evaluation of microstructured materials in a digital framework", Comput. Mater. Sci., 81, 89-97. https://doi.org/10.1016/j.commatsci.2013.05.033
Cited by
- Experimental study of anisotropic behavior of PU foam used in sandwich panels vol.20, pp.1, 2016, https://doi.org/10.12989/scs.2016.20.1.043
- Analytical solution of some delamination scenarios in thick structural sandwich plates 2017, https://doi.org/10.1177/1099636217714182
- Low-velocity impact behaviour of titanium honeycomb sandwich structures 2017, https://doi.org/10.1177/1099636217728421
- A numerical and theoretical investigation on composite pipe-in-pipe structure under impact vol.22, pp.5, 2014, https://doi.org/10.12989/scs.2016.22.5.1085
- Design of stepwise foam claddings subjected to air-blast based on Voronoi model vol.23, pp.1, 2014, https://doi.org/10.12989/scs.2017.23.1.107
- Steel processing effects on crash performance of vehicle safety related applications vol.24, pp.3, 2014, https://doi.org/10.12989/scs.2017.24.3.351
- Mechanical behavior of FRP confined steel tubular columns under impact vol.27, pp.6, 2014, https://doi.org/10.12989/scs.2018.27.6.691
- Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading vol.31, pp.2, 2014, https://doi.org/10.12989/scs.2019.31.2.133
- Effect of Foam’s Heterogeneity on the Behaviour of Sandwich Panels vol.29, pp.4, 2019, https://doi.org/10.2478/ceer-2019-0047
- Experimental estimation of the damping ratio of metallic foam sandwich panels with sand intrusions vol.23, pp.5, 2021, https://doi.org/10.21595/jve.2021.21812